Spatio-temporal variability of physico-chemical variables, chlorophyll a, and primary productivity in the northern Arabian Sea along India coast

Author(s):  
Vinaya Kumar Vase ◽  
Gyanaranjan Dash ◽  
K. R. Sreenath ◽  
Ganesh Temkar ◽  
R. Shailendra ◽  
...  
2018 ◽  
Vol 15 (5) ◽  
pp. 1395-1414 ◽  
Author(s):  
Saleem Shalin ◽  
Annette Samuelsen ◽  
Anton Korosov ◽  
Nandini Menon ◽  
Björn C. Backeberg ◽  
...  

Abstract. The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50–75∘ E and 15–30∘ N) during the winter months (November–March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.


2007 ◽  
Vol 126 (2) ◽  
pp. 297-309 ◽  
Author(s):  
Denny P. Alappattu ◽  
D. Bala Subrahamanyam ◽  
P. K. Kunhikrishnan ◽  
Radhika Ramachandran ◽  
K. M. Somayaji ◽  
...  

2019 ◽  
Vol 39 (9) ◽  
Author(s):  
雷茜 LEI Xi ◽  
罗红霞 LUO Hongxia ◽  
白林燕 BAI Linyan ◽  
冯建中 FENG Jianzhong ◽  
罗东 LUO Dong

2020 ◽  
Vol 12 (13) ◽  
pp. 2150
Author(s):  
Andrea Corredor-Acosta ◽  
Náyade Cortés-Chong ◽  
Alberto Acosta ◽  
Matias Pizarro-Koch ◽  
Andrés Vargas ◽  
...  

The analysis of synoptic satellite data of total chlorophyll-a (Chl-a) and the environmental drivers that influence nutrient and light availability for phytoplankton growth allows us to understand the spatio-temporal variability of phytoplankton biomass. In the Panama Bight Tropical region (PB; 1–9°N, 79–84°W), the spatial distribution of Chl-a is mostly related to the seasonal wind patterns and the intensity of localized upwelling centers. However, the association between the Chl-a and different physical variables and nutrient availability is still not fully assessed. In this study, we evaluate the relationship between the Chl-a and multiple physical (wind, Ekman pumping, geostrophic circulation, mixed layer depth, sea level anomalies, river discharges, sea surface temperature, and photosynthetically available radiation) and chemical (nutrients) drivers in order to explain the spatio-temporal Chl-a variability in the PB. We used satellite data of Chl-a and physical variables, and a re-analysis of a biogeochemical product for nutrients (2002–2016). Our results show that at the regional scale, the Chl-a varies seasonally in response to the wind forcing and sea surface temperature. However, in the coastal areas (mainly Gulf of Panama and off central-southern Colombia), the maximum non-seasonal Chl-a values are found in association with the availability of nutrients by river discharges, localized upwelling centers and the geostrophic circulation field. From this study, we infer that the interplay among these physical-chemical drivers is crucial for supporting the phytoplankton growth and the high biodiversity of the PB region.


2020 ◽  
Vol 12 (11) ◽  
pp. 1859
Author(s):  
Mengmeng Yang ◽  
Joaquim I. Goes ◽  
Hongzhen Tian ◽  
Elígio de R. Maúre ◽  
Joji Ishizaka

We investigated the spatio-temporal variability of chlorophyll-a (Chl-a) and total suspended matter (TSM) associated with spring–neap tidal cycles in the Ariake Sea, Japan. Our study relied on significantly improved, regionally-tuned datasets derived from the ocean color sensor Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua over a 16-year period (2002–2017). The results revealed that spring–neap tidal variations in Chl-a and TSM within this macrotidal embayment (the Ariake Sea) are clearly different regionally and seasonally. Generally, the spring–neap tidal variability of Chl-a in the inner part of the Ariake Sea was controlled by TSM for seasons other than summer, whereas it was controlled by river discharge for summer. On the other hand, the contribution of TSM to the variability of Chl-a was not large for two areas in the middle of Ariake Sea where TSM was not abundant. This study demonstrates that ocean color satellite observations of Chl-a and TSM in the macrotidal embayment offer strong advantages for understanding the variations during the spring–neap tidal cycle.


Sign in / Sign up

Export Citation Format

Share Document