Contamination profiles and risk assessment of per- and polyfluoroalkyl substances in groundwater in China

2020 ◽  
Vol 192 (2) ◽  
Author(s):  
Xiaocui Qiao ◽  
Lixin Jiao ◽  
Xiaoxia Zhang ◽  
Xue Li ◽  
Shuran Hao ◽  
...  
2020 ◽  
Author(s):  
A.J.F. Reardon ◽  
A. Rowan-Carroll ◽  
S.S. Ferguson ◽  
K. Leingartner ◽  
R. Gagne ◽  
...  

AbstractPer- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications from human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this investigation was to identify biological response potencies (i.e., benchmark concentrations: BMCs) following PFAS exposures to inform read-across for risk assessment of data-poor PFAS. Gene expression changes were measured in primary human liver cell microtissues (i.e., 3D spheroids) after 1-day and 10-day exposures to increasing concentrations of 23 PFAS. The cells were treated with four subgroups of PFAS: carboxylates (PFCAs), sulfonates (PFSAs), fluorotelomers, and sulfonamides. An established pipeline to identify differentially expressed genes and transcriptomic BMCs was applied. We found that both PFCAs and PFSAs exhibited a trend toward increased transcriptional changes with carbon chain-length. Specifically, longer-chain compounds (7 to 10 carbons) were more likely to induce changes in gene expression, and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses supports the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the health effects of PFAS and will be used to inform read-across for human health risk assessment.


2021 ◽  
Vol 780 ◽  
pp. 146450
Author(s):  
Estefanía Concha-Graña ◽  
Carmen Moscoso-Pérez ◽  
Verónica Fernández-González ◽  
Purificación López-Mahía ◽  
Jesús Gago ◽  
...  

Author(s):  
A J F Reardon ◽  
A Rowan-Carroll ◽  
S S Ferguson ◽  
K Leingartner ◽  
R Gagne ◽  
...  

Abstract Per- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this study was to compare the potencies (i.e., benchmark concentrations: BMCs) of PFAS in primary human liver microtissues (3D spheroids) using high-throughput transcriptional profiling. Gene expression changes were measured using TempO-seq, a templated, multiplexed RNA-sequencing platform. Spheroids were exposed for 1 or 10 days to increasing concentrations of 23 PFAS in three subgroups: carboxylates (PFCAs), sulfonates (PFSAs), and fluorotelomers and sulfonamides. PFCAs and PFSAs exhibited trends toward increased transcriptional potency with carbon chain-length. Specifically, longer-chain compounds (7 to 10 carbons) were more likely to induce changes in gene expression and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses support the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the possible health effects of PFAS and will be used to inform read-across for human health risk assessment.


Author(s):  
K.L. Vorst ◽  
Neal Saab ◽  
Paulo Silva ◽  
Greg Curtzwiler ◽  
Abby Steketee

Sign in / Sign up

Export Citation Format

Share Document