scholarly journals Hybrid Neural Networks and Boosted Regression Tree Models for Predicting Roadside Particulate Matter

2016 ◽  
Vol 21 (6) ◽  
pp. 731-750 ◽  
Author(s):  
A. Suleiman ◽  
M. R. Tight ◽  
A. D. Quinn
2015 ◽  
Vol 65 (7-8) ◽  
pp. 365-371 ◽  
Author(s):  
Dillon M. Carty ◽  
Timothy M. Young ◽  
Russell L. Zaretzki ◽  
Frank M. Guess ◽  
Alexander Petutschnigg

2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


Author(s):  
Ghalia Gamaleldin ◽  
Haitham Al-Deek ◽  
Adrian Sandt ◽  
John McCombs ◽  
Alan El-Urfali

Safety performance functions (SPFs) are essential tools to help agencies predict crashes and understand influential factors. Florida Department of Transportation (FDOT) has implemented a context classification system which classifies intersections into eight context categories rather than the three classifications used in the Highway Safety Manual (HSM). Using this system, regional SPFs could be developed for 32 intersection types (unsignalized and signalized 3-leg and 4-leg for each category) rather than the 10 HSM intersection types. In this paper, eight individual intersection group SPFs were developed for the C3R-Suburban Residential and C4-Urban General categories and compared with full SPFs for these categories. These comparisons illustrate the unique and regional insights that agencies can gain by developing these individual SPFs. Poisson, negative binomial, zero-inflated, and boosted regression tree models were developed for each studied group as appropriate, with the best model selected for each group based on model interpretability and five performance measures. Additionally, a linear regression model was built to predict minor roadway traffic volumes for intersections which were missing these volumes. The full C3R and C4 SPFs contained four and six significant variables, respectively, while the individual intersection group SPFs in these categories contained six and nine variables. Factors such as major median, intersection angle, and FDOT District 7 regional variable were absent from the full SPFs. By developing individual intersection group SPFs with regional factors, agencies can better understand the factors and regional differences which affect crashes in their jurisdictions and identify effective treatments.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


Sign in / Sign up

Export Citation Format

Share Document