Developing sustainable development Index as a tool for appropriate urban land take

Author(s):  
Pranav Gupta ◽  
Alka Bharat
2015 ◽  
pp. 147-160 ◽  
Author(s):  
S. Bobylev ◽  
N. Zubarevich ◽  
S. Solovyeva

The article emphasizes the fact that traditional socio-economic indicators do not reflect the challenges of sustainable development adequately, and this is particularly true for the widely-used GDP indicator. In this connection the elaboration of sustainable development indicators is needed, taking into account economic, social and environmental factors. For Russia, adaptation and use of concepts and basic principles of calculation methods for adjusted net savings index (World Bank) and human development index (UNDP) as integral indicators can be promising. The authors have developed the sustainable development index for Russia, which aggregates and allows taking into account balanced economic, social and environmental indicators.


2021 ◽  
Vol 13 (4) ◽  
pp. 2338
Author(s):  
Xinxin Huang ◽  
Gang Xu ◽  
Fengtao Xiao

As one of the 17 Sustainable Development Goals, it is sensible to analysis historical urban land use characteristics and project the potentials of urban sustainable development for a smart city. The cellular automaton (CA) model is the widely applied in simulating urban growth, but the optimum parameters of variables driving urban growth in the model remains to be continued to improve. We propose a novel model integrating an artificial fish swarm algorithm (AFSA) and CA for optimizing parameters of variables in the urban growth model and make a comparison between AFSA-CA and other five models, which is used to study a 40-year urban land growth of Wuhan. We found that the urban growth types from 1995 to 2015 appeared relatively consistent, mainly including infilling, edge-expansion and distant-leap types in Wuhan, which a certain range of urban land growth on the periphery of the central area. Additionally, although the genetic algorithms (GA)-CA model and the AFSA-CA model among the six models due to the distance variables, the parameter value of the GA-CA model is −15.5409 according to the fact that the population (POP) variable should be positively. As a result, the AFSA-CA model regardless of the initial parameter setting is superior to the GA-CA model and the GA-CA model is superior to all the other models. Finally, it is projected that the potentials of urban growth in Wuhan for 2025 and 2035 under three scenarios (natural urban land growth without any restrictions (NULG), sustainable urban land growth with cropland protection and ecological security (SULG), and economic urban land growth with sustainable development and economic development in the core area (EULG)) focus mainly on existing urban land and some new town centers based on AFSA-CA urban growth simulation model. An increasingly precise simulation can determine the potential increase area and quantity of urban land, providing a basis to judge the layout of urban land use for urban planners.


2013 ◽  
Vol 67 (2) ◽  
pp. 357-364 ◽  
Author(s):  
Nebojsa Veljkovic

The subject of research is elaboration and evaluation of indicators of sustainable development in the field of river basin management. Aggregate indicator entitled Ecoregion Sustainable Development Index is identified by calculation of average value by the procedure of leveling of proportion changes of three key indicators (demographic emission index, water quality index, industrial production index). Developed aggregate indicator of sustainable development is calculated and analyzed for South Morava river basin in Serbia, for the period from 1980 to 2010. The beneficiaries of these indicators are the experts from the field of environmental protection and water management who should use it for elaboration of reports directed towards the creators of economic development policy and river basin management planning. Elaborated according to the given methodology, the indicator Ecoregion Sustainable Development Index is available for the decision makers on the national level, internationally comparative and it provides the conditions for further elaboration and application.


Author(s):  
Sandrina B. Moreira ◽  
Nuno Crespo

Development is a complex and multidimensional phenomenon. The quantification of such a phenomenon requires indicators that may capture its most important components. In this chapter we present an extensive list of composite indicators of development, identifying their main possible common dimensions: income, income distribution, education, health, employment, infrastructures, values, and environment. We also discuss in detail five recent indices characterized by their comprehensiveness: 1) Regional Quality of Development Index (QUARS) of Sbilanciamoci!; 2) Wellbeing Index (WI) and Wellbeing/Stress Index (WSI) for measuring sustainable development; 3) Gross National Happiness (GNH) from the Center for Bhutan Studies; 4) Bertelsmann Transformation Index (BTI) of Bertelsmann Stiftung; and 5) World competitiveness scoreboard from the Institute for Management Development (IMD).


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 406
Author(s):  
Xiangyu Wang ◽  
Peichao Gao ◽  
Changqing Song ◽  
Changxiu Cheng

Sustainable development appears to be the theme of our time. To assess the progress of sustainable development, a simple but comprehensive index is of great use. To this end, a multivariate index of sustainable development was developed in this study based on indicators of the United Nations Sustainable Development Goals (SDGs). To demonstrate the usability of this developed index, we applied it to Fujian Province, China. According to the China SDGs indicators and the Fujian situation, we divided the SDGs into three dimensions and selected indicators based on these dimensions. We calculated the weights and two indices with the entropy weight coefficient method based on collecting and processing of data from 2007 to 2017. We assessed and analyzed the sustainable development of Fujian with two indices and we drew three main conclusions. From 2007 to 2017, the development index of Fujian showed an increasing trend and the coordination index of Fujian showed a fluctuating trend. It is difficult to smoothly improve the coordination index of Fujian because the development speeds of Goal 3 (Good Health and Well-being) and Goal 16 (Peace, Justice, and Strong Institutions) were low. The coordination index of Fujian changed from strong coordination to medium coordination from 2011 to 2012 because the development speed of the environmental dimension suddenly improved. It changed from strong coordination to medium coordination from 2015 to 2016 because the values of the development index of the social dimension were decreasing. To the best of our knowledge, these are the first SDGs-based multivariate indices of sustainable development for a region of China. These indices are applicable to different regions.


Sign in / Sign up

Export Citation Format

Share Document