scholarly journals Extreme value analysis for the sample autocovariance matrices of heavy-tailed multivariate time series

Extremes ◽  
2016 ◽  
Vol 19 (3) ◽  
pp. 517-547 ◽  
Author(s):  
Richard A. Davis ◽  
Johannes Heiny ◽  
Thomas Mikosch ◽  
Xiaolei Xie
Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2208
Author(s):  
Ekaterina Morozova ◽  
Vladimir Panov

This paper deals with the extreme value analysis for the triangular arrays which appear when some parameters of the mixture model vary as the number of observations grows. When the mixing parameter is small, it is natural to associate one of the components with “an impurity” (in the case of regularly varying distribution, “heavy-tailed impurity”), which “pollutes” another component. We show that the set of possible limit distributions is much more diverse than in the classical Fisher–Tippett–Gnedenko theorem, and provide the numerical examples showing the efficiency of the proposed model for studying the maximal values of the stock returns.


2019 ◽  
Vol 34 (2) ◽  
pp. 200-220
Author(s):  
Jingjing Zou ◽  
Richard A. Davis ◽  
Gennady Samorodnitsky

AbstractIn this paper, we are concerned with the analysis of heavy-tailed data when a portion of the extreme values is unavailable. This research was motivated by an analysis of the degree distributions in a large social network. The degree distributions of such networks tend to have power law behavior in the tails. We focus on the Hill estimator, which plays a starring role in heavy-tailed modeling. The Hill estimator for these data exhibited a smooth and increasing “sample path” as a function of the number of upper order statistics used in constructing the estimator. This behavior became more apparent as we artificially removed more of the upper order statistics. Building on this observation we introduce a new version of the Hill estimator. It is a function of the number of the upper order statistics used in the estimation, but also depends on the number of unavailable extreme values. We establish functional convergence of the normalized Hill estimator to a Gaussian process. An estimation procedure is developed based on the limit theory to estimate the number of missing extremes and extreme value parameters including the tail index and the bias of Hill's estimator. We illustrate how this approach works in both simulations and real data examples.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1273
Author(s):  
Tosiyuki Nakaegawa ◽  
Takuro Kobashi ◽  
Hirotaka Kamahori

Extreme precipitation is no longer stationary under a changing climate due to the increase in greenhouse gas emissions. Nonstationarity must be considered when realistically estimating the amount of extreme precipitation for future prevention and mitigation. Extreme precipitation with a certain return level is usually estimated using extreme value analysis under a stationary climate assumption without evidence. In this study, the characteristics of extreme value statistics of annual maximum monthly precipitation in East Asia were evaluated using a nonstationary historical climate simulation with an Earth system model of intermediate complexity, capable of long-term integration over 12,000 years (i.e., the Holocene). The climatological means of the annual maximum monthly precipitation for each 100-year interval had nonstationary time series, and the ratios of the largest annual maximum monthly precipitation to the climatological mean had nonstationary time series with large spike variations. The extreme value analysis revealed that the annual maximum monthly precipitation with a return level of 100 years estimated for each 100-year interval also presented a nonstationary time series which was normally distributed and not autocorrelated, even with the preceding and following 100-year interval (lag 1). Wavelet analysis of this time series showed that significant periodicity was only detected in confined areas of the time–frequency space.


2018 ◽  
Vol 31 (21) ◽  
pp. 8819-8842 ◽  
Author(s):  
Alberto Meucci ◽  
Ian R. Young ◽  
Øyvind Breivik

The present work develops an innovative approach to wind speed and significant wave height extreme value analysis. The approach is based on global atmosphere–wave model ensembles, the members of which are propagated in time from the best estimate of the initial state, with slight perturbations to the initial conditions, to estimate the uncertainties connected to model representations of reality. The low correlation of individual ensemble member forecasts at advanced lead times guarantees their independence and allows us to perform inference statistics. The advantage of ensemble probabilistic forecasts is that it is possible to synthesize an equivalent dataset of duration far longer than the simulation period. This allows the use of direct inference statistics to obtain extreme value estimates. A short time series of six years (from 2010 to 2016) of ensemble forecasts is selected to avoid major changes to the model physics and resolution and thus ensure stationarity. This time series is used to undertake extreme value analysis. The study estimates global wind speed and wave height return periods by selecting peaks from ensemble forecasts from +216- to +240-h lead time from the operational ensemble forecast dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF). The results are compared with extreme value analyses performed on a commonly used reanalysis dataset, ERA-Interim, and buoy data. The comparison with traditional methods demonstrates the potential of this novel approach for statistical analysis of significant wave height and wind speed ocean extremes at the global scale.


2014 ◽  
Vol 23 (6) ◽  
pp. 812 ◽  
Author(s):  
M. G. Scotto ◽  
S. Gouveia ◽  
A. Carvalho ◽  
A. Monteiro ◽  
V. Martins ◽  
...  

Forest fires are a major concern in Europe, particularly in Portugal where large forest fires are responsible for negative environmental, social and economic effects. In this work, a long time series of daily area burned in 18 Portuguese districts (north, coastal areas and inner–south) from 1980 to 2010 are analysed to characterise extreme area burned and regional variability. The analysis combines the peak-over-threshold method and classification techniques to cluster the time series on the basis either of their corresponding tail indices or their predictive distributions for 5- and 15-year return values, that is, the level that is exceeded on average once every 5 or 15 years. As previously reported in other wildfire studies, the results show that the distributions of area burned (1980–2010) are heavy tailed for all Portuguese districts, with considerable density in the tail, indicating a non-negligible probability of occurrence of days with very large area burned. Moreover, clustering based on tail indices identified three distinct groups with spatial pattern closely related to the percentage of shrub cover within each district. Finally, clustering based on return values shows that the largest return levels of area burned are expected to occur in districts located in the centre and south of Portugal.


Sign in / Sign up

Export Citation Format

Share Document