Ammonia excretion and blood gas variation in naked carp (Gymnocypris przewalskii) exposed to acute hypoxia and high alkalinity

2020 ◽  
Vol 46 (6) ◽  
pp. 1981-1990
Author(s):  
Hang Li ◽  
Qifang Lai ◽  
Zongli Yao ◽  
Yimeng Liu ◽  
Pengcheng Gao ◽  
...  
2007 ◽  
Vol 292 (5) ◽  
pp. R2048-R2058 ◽  
Author(s):  
Chris M. Wood ◽  
Makiko Kajimura ◽  
Katherine A. Sloman ◽  
Graham R. Scott ◽  
Patrick J. Walsh ◽  
...  

The Amazonian oscar is extremely resistant to hypoxia, and tolerance scales with size. Overall, ionoregulatory responses of small (∼15 g) and large oscars (∼200 g) to hypoxia were qualitatively similar, but the latter were more effective. Large oscars exhibited a rapid reduction in unidirectional Na+ uptake rate at the gills during acute hypoxia (Po2 ∼10 mmHg), which intensified with time (7 or 8 h); Na+ efflux rates were also reduced, so net balance was little affected. The inhibitions were virtually immediate (1st h) and preceded a later 60% reduction (at 3 h) in gill Na+-K+-ATPase activity, reflected in a 60% reduction in maximum Na+ uptake capacity without change in affinity (Km) for Na+. Upon acute restoration of normoxia, recovery of Na+ uptake was delayed for 1 h. These data suggest that dual mechanisms may be involved (e.g., immediate effects of O2 availability on transporters, channels, or permeability, slower effects of Na+-K+-ATPase regulation). Ammonia excretion appeared to be linked indirectly to Na+ uptake, exhibiting a Michaelis-Menten relationship with external [Na+], but the Km was less than for Na+ uptake. During hypoxia, ammonia excretion fell in a similar manner to Na+ fluxes, with a delayed recovery upon normoxia restoration, but the relationship with [Na+] was blocked. Reductions in ammonia excretion were greater than in urea excretion. Plasma ammonia rose moderately over 3 h hypoxia, suggesting that inhibition of excretion was greater than inhibition of ammonia production. Overall, the oscar maintains excellent homeostasis of ionoregulation and N-balance during severe hypoxia.


Author(s):  
J.R. Walton

In electron microscopy, lead is the metal most widely used for enhancing specimen contrast. Lead citrate requires a pH of 12 to stain thin sections of epoxy-embedded material rapidly and intensively. However, this high alkalinity tends to leach out enzyme reaction products, making lead citrate unsuitable for many cytochemical studies. Substitution of the chelator aspartate for citrate allows staining to be carried out at pH 6 or 7 without apparent effect on cytochemical products. Moreover, due to the low, controlled level of free lead ions, contamination-free staining can be carried out en bloc, prior to dehydration and embedding. En bloc use of lead aspartate permits the grid-staining step to be bypassed, allowing samples to be examined immediately after thin-sectioning.Procedures. To prevent precipitation of lead salts, double- or glass-distilled H20 used in the stain and rinses should be boiled to drive off carbon dioxide and glassware should be carefully rinsed to remove any persisting traces of calcium ion.


2007 ◽  
Author(s):  
S. I. Soroko ◽  
S. S. Bekshaev ◽  
V. P. Rozhkov

Author(s):  
Vladimir I. Portnichenko ◽  
Valentina I. Nosar ◽  
Alla M. Sydorenko ◽  
Alla G. Portnychenko ◽  
Irina N. Mankovska

Author(s):  
G.G. Khubulava ◽  
A.B. Naumov ◽  
S.P. Marchenko ◽  
O.Yu. Chupaeva ◽  
A.A. Seliverstova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document