Nitrous oxide emissions from enhanced-efficiency nitrogen fertilizers applied to annual crops in a subtropical ecosystem

Author(s):  
Marcos Renan Besen ◽  
Ricardo Henrique Ribeiro ◽  
Cimélio Bayer ◽  
Jonatas Thiago Piva
2016 ◽  
Vol 45 (5) ◽  
pp. 1788-1795 ◽  
Author(s):  
Katrina L. Gillette ◽  
Yaling Qian ◽  
Ronald F. Follett ◽  
Stephen Del Grosso

2019 ◽  
Vol 99 (4) ◽  
pp. 420-433
Author(s):  
Mayowa Adelekun ◽  
Olalekan Akinremi ◽  
Mario Tenuta ◽  
Paligwendé Nikièma

The disruptive land-use change during forage grass conversion to annual crop can be critical for determining nitrous oxide (N2O) emissions, but this is an understudied period. We measured soil N2O fluxes (using closed static vented chambers) together with potential environmental drivers of these fluxes from liquid pig manure (LPM) and solid pig manure (SPM) applied to an annual crop (ANN) and perennial forages (FPP) that was converted to annual crop. Unamended plots were used as a control (CON). The results showed that in 2013, average soil nitrate-N was significantly higher on the recently converted FPP (ranging from 19 to 83 mg N kg−1) than the continuous ANN plots (from 16 to 35 mg N kg−1). The recently converted perennial forage system produced three times greater N2O than the continuous annual system, which is likely a result of accelerated N mineralization from the accumulated soil organic matter (over 4 yr) and grass residues of the recently killed forage grasses. However, during the second year of the study when the FPP plots were reseeded to perennial grasses, the system emitted 30% less N2O than the ANN system. These results suggest that including perennial forage grass in rotation with annual crops can provide N-saving and climate change mitigation benefits; however, some of the N stored in the soil would be lost when the perennial grass plots are cultivated to grow annual crops.


2001 ◽  
Vol 1 ◽  
pp. 336-342 ◽  
Author(s):  
A AA. Romanovskaya ◽  
A M.L. Gytarsky ◽  
A R.T. Karaban ◽  
A D.E. Konyushkov ◽  
A I.M. Nazarov

The intensity of nitrous oxide (N2O) emission was considered based on literature data on the single input of mineral N (nitrogen) fertilizers into different agricultural soil types in Russia. Ambient environmental factors exert a combined effect on the process of gaseous nitrogen formation from fertilizers applied. To reduce the uncertainty of estimates as much as possible, only experimental results obtained under conditions similar to natural were selected for the assessments. Mineral nitric fertilizers were applied to soil at a rate of 40 to 75 kg/ha and the N2O emissions were measured for approximately 140 days. Daily average emission values varied from 0.08 to 0.45% of fertilizer nitrogen. Correspondingly, 1.26 and 2.38% of fertilizer nitrogen were emitted as N2O from chernozems and soddy podzols. In 1990, the use of fertilizers in Russian agricultural practices for 53 Gg N2O-N, which equates to approximately 6.1% of global nitrous oxide emissions from nitric fertilizers. Later, the emission dropped because of a decrease in the input of nitric fertilizers to agricultural crops, and in 1998, it constituted just 20.5% of the 1990 level. In the period from 2008 to 2012, the nitrous oxide emission is expected to vary from 0.5 to 65.0 Gg N2O-N due to possible changes in national agricultural development. In the most likely scenario, the use of mineral fertilizers in Russia will account for approximately 34 to 40 Gg N2O-N emissions annually from 2008�2012.


2021 ◽  
Author(s):  
Jarno Rouhiainen ◽  
Dorothee Neukam ◽  
Rene Dechow ◽  
Rima Rabah Nasser ◽  
Henning Kage

<div> <div> <div> <p>Nitrous oxide is an important greenhouse gas. In Germany, around 50% of annual nitrous oxide emissions originate from managed agricultural land. Among other options, the mitigation of nitrous oxide emissions from arable land is one important measure to reduce greenhouse gas emissions of the agricultural sector. Several mitigation options have been examined including reduced application of nitrogen fertilizers, timing of fertilizer applications, crop residue management, pH management or application of nitrification inhibitors. Depending on the underlying natural conditions (soil, climate), these measures vary in their mitigation efficiency.</p> <p>Suitable methods are required to evaluate and quantify mitigation strategies for nitrous oxide emissions at a regional and national scale. For this purpose, several model approaches have been developed ranging from simple stochastic equations to sophisticated process-based models. Because of their reduced input requirements, stochastic approaches like emission factor approaches are common to quantify nitrous oxide emissions and mitigation effects while process based models are promising tools to describe interactions of natural conditions and anthropogenic activities. They have the potential to be more accurate and informative.</p> <p>However, due to the complex nature of N2O producing processes in croplands and the high spatial and temporal variability of N2O fluxes the portability of model developments from one site to another site or the validity of upscaling methods are questionable. We collected available field experimental data measuring nitrous oxide emissions to improve and analyze the prediction accuracy of model approaches in Germany, recently with data of 19 sites and 1251 site years in total and focus on the crop types wheat, maize and rape.</p> <p>Here, we present this data set and show results of model applications and a multi-site sensitivity analyses with the process based model DNDCv.Can. Contrary to other DNDC versions, DNDCvCAN allows to modify a range of internal parameters.</p> <p>We performed sensitivity analyses based on the Morris method by varying 45 model parameters. Each participating site was modeled for a three years period and the simulations were repeated for each parameter 500 times, resulting to 23000 simulations per site. Highest impact on N2O emissions were caused by soil concentrations of humads, humus and black carbon and their related C/N ratios. Surprisingly, N2O emissions showed only minor sensitivites in general on hydrological parameters and</p> </div> </div> </div><div> <div> <div> <p>on parameters related to N cycling in soil profile. Parameters controling macropore flow, nitrifier growth and denitrifier growth made here an exception. Sets of ranked most sensitive parameters varied between sites showing that multi-site sensitivity analyses might be helpful to identify global and local parameters for model calibration and help to assess regional mitigation effects.</p> </div> </div> </div>


Author(s):  
Yash P. Dang ◽  
Cristina Martinez ◽  
Daniel Smith ◽  
David Rowlings ◽  
Peter Grace ◽  
...  

Author(s):  
Koloman Krištof ◽  
Tomáš Šima ◽  
Ladislav Nozdrovický ◽  
Ján Jobbágy ◽  
Jan Mareček ◽  
...  

Fertilizers are an important tool to maintain soil fertility and as an enhancement for the efficient crop production. The system of fertilizers application affects the final dose and commonly causes local overdosing or insuficient spatial distribution of fertilizers which are a very important source of nitrous oxide emissions (N2O) from the soil into the atmospher observation of such phenomenon are among the key factors defining environmental impacts of agriculture. A study was conducted to observe the effect of application dose of fertilizer on N2O emission from the soil. CAN (Calcium ammonium nitrate – consist of 27 % nitrogen) was spread by a fertiliser spreader Kuhn Axera 1102 H-EMC aggregated with a tractor John Deere 6150 M. Incorporation of fertilizer into the soil was done by power harrow Pöttinger Lion 302. The application dose was set at 0, 100, 200 and 300 kg.ha–1 while monitoring points were selected at the base of this application doses in respective places. Measurements were conducted at time intervals 7, 14, 21 and 28 days after fertiliser application and following incorporation. Nitrous oxide emissions were measured by field gas monitor set INNOVA consisting of a photoacoustic gas monitor INNOVA 1412 and a multipoint sampler INNOVA 1309. Statistically significant differences was found among time intervals and among the application dose (p > 0.05). It was observed that the application dose of selected fertilizers has the direct effect on nitrous oxide (N2O) emissions released from soil into the atmosphere. An increase of greenhouse gas emissions was observed in range from 0.83 to 152.33 %. It can be concluded that the local overdose of fertilizers negatively affects environmental impact of agricultural practices at greenhouse gas emissions (GHGs).


2014 ◽  
Vol 106 (2) ◽  
pp. 723-731 ◽  
Author(s):  
Curtis J. Dell ◽  
Kun Han ◽  
Ray B. Bryant ◽  
John P. Schmidt

2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

Sign in / Sign up

Export Citation Format

Share Document