scholarly journals Application of Nitrogen Fertilizers and Its Effect on Timeliness of Fertilizers Decomposition Resulting in Lost of Nitrogen Through Nitrous Oxide Emissions from Soil

Author(s):  
Koloman Krištof ◽  
Tomáš Šima ◽  
Ladislav Nozdrovický ◽  
Ján Jobbágy ◽  
Jan Mareček ◽  
...  

Fertilizers are an important tool to maintain soil fertility and as an enhancement for the efficient crop production. The system of fertilizers application affects the final dose and commonly causes local overdosing or insuficient spatial distribution of fertilizers which are a very important source of nitrous oxide emissions (N2O) from the soil into the atmospher observation of such phenomenon are among the key factors defining environmental impacts of agriculture. A study was conducted to observe the effect of application dose of fertilizer on N2O emission from the soil. CAN (Calcium ammonium nitrate – consist of 27 % nitrogen) was spread by a fertiliser spreader Kuhn Axera 1102 H-EMC aggregated with a tractor John Deere 6150 M. Incorporation of fertilizer into the soil was done by power harrow Pöttinger Lion 302. The application dose was set at 0, 100, 200 and 300 kg.ha–1 while monitoring points were selected at the base of this application doses in respective places. Measurements were conducted at time intervals 7, 14, 21 and 28 days after fertiliser application and following incorporation. Nitrous oxide emissions were measured by field gas monitor set INNOVA consisting of a photoacoustic gas monitor INNOVA 1412 and a multipoint sampler INNOVA 1309. Statistically significant differences was found among time intervals and among the application dose (p > 0.05). It was observed that the application dose of selected fertilizers has the direct effect on nitrous oxide (N2O) emissions released from soil into the atmosphere. An increase of greenhouse gas emissions was observed in range from 0.83 to 152.33 %. It can be concluded that the local overdose of fertilizers negatively affects environmental impact of agricultural practices at greenhouse gas emissions (GHGs).

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2017 ◽  
Vol 13 (1) ◽  
pp. 39-49
Author(s):  
Paweł Wiśniewski ◽  
Mariusz Kistowski

Abstract Nitrous oxide (N2O) is one of the main greenhouse gases, with a nearly 300 times greater potential to produce a greenhouse effect than carbon dioxide (CO2). Almost 80% of the annual emissions of this gas in Poland come from agriculture, and its main source is the use of agricultural soils. The study attempted to estimate the N2O emission from agricultural soils and to indicate its share in the total greenhouse gas emissions in 48 Polish communes. For this purpose, a simplified solution has been proposed which can be successfully applied by local government areas in order to assess nitrous oxide emissions, as well as to monitor the impact of actions undertaken to limit them. The estimated emission was compared with the results of the baseline greenhouse gas inventory prepared for the needs of the low-carbon economy plans adopted by the studied self-governments. This allowed us to determine the share of N2O emissions from agricultural soils in the total greenhouse gas emissions of the studied communes. The annual N2O emissions from agricultural soils in the studied communes range from 1.21 Mg N2O-N to 93.28 Mg N2O-N, and the cultivation of organic soils is its main source. The use of mineral and natural fertilisers, as well as indirect emissions from nitrogen leaching into groundwater and surface waters, are also significant. The results confirm the need to include greenhouse gas emissions from the use of agricultural soils and other agricultural sources in low-carbon economy plans.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4904
Author(s):  
Zofia Koloszko-Chomentowska ◽  
Leszek Sieczko ◽  
Roman Trochimczuk

The negative impact of agricultural production on the environment is manifested, above all, in the emission of greenhouse gases (GHG). The goals of this study were to estimate methane and nitrous oxide emissions at the level of individual farms and indicate differences in emissions depending on the type of production, and to investigate dependencies between greenhouse gas emissions and economic indicators. Methane and nitrous oxide emissions were estimated at three types of farms in Poland, based on FADN data: field crops, milk, and mixed. Data were from 2004–2018. Statistical analysis confirmed the relationship between greenhouse gas emissions and economic performance. On milk farms, the value of methane and nitrous oxide emissions increased with increased net value added and farm income. Milk farms reached the highest land productivity and the highest level of income per 1 ha of farmland. On field crops farms, the relationship between net value added and farm income and methane and nitrous oxide emissions was negative. Animals remain a strong determinant of methane and nitrous oxide emissions, and the emissions at milk farms were the highest. On mixed farms, emissions result from intensive livestock and crop production. In farms of the field crops type, emissions were the lowest and mainly concerned crops.


2018 ◽  
Vol 58 (6) ◽  
pp. 1087 ◽  
Author(s):  
G. N. Ward ◽  
K. B. Kelly ◽  
J. W. Hollier

Nitrous oxide (N2O) from excreta deposited by grazing ruminants is a major source of greenhouse gas emissions in Australia. Experiments to measure N2O emissions from dairy cow dung, urine and pond sludge applied to pasture, and the effectiveness of the nitrification inhibitor nitrapyrin in reducing these emissions, were conducted in south-western Victoria, Australia. In Experiment 1, emissions from urine, with and without nitrapyrin, and from dung were measured. Treatments applied in September 2013 resulted in cumulative emissions (245 days) of 0.60, 5.35, 4.15 and 1.02 kg N2O-nitrogen (N)/ha for the nil, urine (1000 kg N/ha), urine (1000 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (448 kg N/ha) treatments, respectively, giving emission factors of 0.47% and 0.09% for urine and dung respectively. Nitrapyrin reduced N2O emissions from urine for 35 days, with an overall reduction in emissions of 25%. In Experiment 2, sludge, with and without nitrapyrin, was applied in May 2014, and dung was applied in May, August, November 2014 and January 2015. Cumulative emissions (350 days) were 0.19, 0.49, 0.31 and 0.39 kg N2O-N/ha for the nil, sludge (308 kg N/ha), sludge (308 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (total 604 kg N/ha) treatments, respectively, giving emission factors of 0.10% and 0.03% for sludge and dung. Nitrapyrin reduced N2O emissions from sludge for 60 days, with an overall reduction in emissions of 59%. A third experiment on two soil types compared emissions from urine and dung, with and without nitrapyrin, applied in different seasons of the year. Emissions were highly seasonal and strongly related to soil water status. Emission factors (90 days) ranged from 0.02% to 0.19% for urine and 0.01% to 0.12% for dung. Nitrapyrin reduced emissions from urine by 0–35% and had little effect on emissions from dung. Overall, the experiments found that nitrapyrin was an effective tool in reducing emissions from urine, dung and sludge applied to pasture, but the magnitude varied across the year, with nitrapyrin being most effective when soils had >70% water-filled pore space when major emissions occurred.


2020 ◽  
Vol 4 ◽  
pp. 38-53
Author(s):  
V.A. Grabar ◽  

The current intensive development of shipping and aviation is accompanied by an increase in anthropogenic impact on the environment and climate. According to the International Civil Aviation Organization and the International Maritime Organization (IMO) assessments, greenhouse gas emissions from international air and sea traffic are expected to increase by 2-3 times by 2050. Carbon dioxide, methane and nitrous oxide emissions from international aviation and navigation from the territory of Russia for the period of 1990-2018 were estimated, the dynamics and the main drivers of emissions changes are analyzed, international comparisons are provided. The calculation was made in accordance with the methodology of the Intergovernmental Panel on Climate Change based on the data from the Federal Air Transport Agency and IAA «Port News». Analysis of historical trends shows that greenhouse gas emissions dynamics during the reporting period for international sea and air shippingis almost the same. In 2018, the total emission of CO2, СH4 and N2O from international transport from the territory of Russia amounted to 47.0 million tons of CO2-equivalent, which is 2.7 times higher than in 1990. Carbon dioxide dominates in the component composition of the emissions, its share in the total emission amounted to 99.5%. Contributions of methane and nitrous oxide emissions were 0.1% and 0.4%, respectively. Shipping makes a major contribution to emissions. Russia's share of worldwide carbon dioxide emission from international water and aviation transport does not exceed 3.5%.Emissions from aviation and shipping have been largely driven by economy and international trade. Greenhouse gases emissions from international aviation and maritime transport are expected to decrease in the coming years related to IMO's banon high-sulfur fuel use and reduction of international air and sea traffic in the light of the spread of the coronavirus in 2020.


2021 ◽  
Vol 13 (8) ◽  
pp. 4224
Author(s):  
Jian Xue ◽  
Zeeshan Rasool ◽  
Raima Nazar ◽  
Ahmad Imran Khan ◽  
Shaukat Hussain Bhatti ◽  
...  

Widespread interference of human activities has resulted in major environmental problems, including pollution, global warming, land degradation, and biodiversity loss, directly affecting the sustainability and quality of the environment and ecosystem. The study aims to address the impact of the extraction of natural resources and globalization on the environmental quality in the South Asian countries for the period 1991–2018. A new methodology Dynamic Common Correlated Effects is used to deal with cross-sectional dependence. Most previous studies use only carbon dioxide emissions, which is an inadequate measure of environmental quality. Besides carbon dioxide emissions, we have used other greenhouse gas emissions like nitrous oxide and methane emissions with a new indicator, “ecological footprint”. Long-run estimation results indicate a positive and significant relationship of natural resources with all greenhouse gas emissions and a negative association with the ecological footprint. Globalization shows a negative association with carbon dioxide emissions and nitrous oxide emissions and a positive relationship with the ecological footprint. Institutional performance is negatively correlated with carbon dioxide emissions, methane emissions, and ecological footprint while positively associated with nitrous oxide emissions. The overall findings highlight the pertinence of reducing greenhouse gas emissions and ecological footprint, proper utilizing of natural resources, enhancing globalization, and improving institutional performance to ensure environmental sustainability.


2013 ◽  
Vol 67 (6) ◽  
pp. 1370-1379 ◽  
Author(s):  
J. Liebetrau ◽  
T. Reinelt ◽  
J. Clemens ◽  
C. Hafermann ◽  
J. Friehe ◽  
...  

With the increasing number of biogas plants in Germany the necessity for an exact determination of the actual effect on the greenhouse gas emissions related to the energy production gains importance. Hitherto the life cycle assessments have been based on estimations of emissions of biogas plants. The lack of actual emission evaluations has been addressed within a project from which the selected results are presented here. The data presented here have been obtained during a survey in which 10 biogas plants were analysed within two measurement periods each. As the major methane emission sources the open storage of digestates ranging from 0.22 to 11.2% of the methane utilized and the exhaust of the co-generation units ranging from 0.40 to 3.28% have been identified. Relevant ammonia emissions have been detected from the open digestate storage. The main source of nitrous oxide emissions was the co-generation unit. Regarding the potential of measures to reduce emissions it is highly recommended to focus on the digestate storage and the exhaust of the co-generation.


2021 ◽  
Vol 16 (3) ◽  
pp. 7-13
Author(s):  
Radik Safin ◽  
Ayrat Valiev ◽  
Valeriya Kolesar

Global climatic changes have a negative impact on the development of all sectors of the economy, including agriculture. However, the very production of agricultural products is one of the most important sources of greenhouse gases entering the atmosphere. Taking into account the need to reduce the “carbon footprint” in food production, a special place is occupied by the analysis of the volume of greenhouse gas emissions and the development of measures for their sequestration in agriculture. One of the main directions for reducing emissions and immobilizing greenhouse gases is the development of special techniques for their sequestration in the soil, including those used in agriculture. Adaptation of existing farming systems for this task will significantly reduce the “carbon footprint” from agricultural production, including animal husbandry. The development of carbon farming allows not only to reduce greenhouse gas emissions, but also to significantly increase the level of soil fertility, primarily by increasing the content of organic matter in them. As a result, it becomes possible, along with the production of crop production, to produce “carbon units” that are sold on local and international markets. The paper analyzes possible greenhouse gas emissions from agriculture and the potential for their sequestration in agricultural soils. The role of various elements of the farming system in solving the problem of reducing the “carbon footprint” is considered and ways of developing carbon farming in the Republic of Tatarstan are proposed


Author(s):  
Cécile Martin ◽  
◽  
Vincent Niderkorn ◽  
Gaëlle Maxin ◽  
Jessie Guyader ◽  
...  

This chapter focuses on the opportunity to use plant bioactive compounds in ruminant diets for their potential to mitigate greenhouse gas emissions, particularly enteric methane. Nitrous oxide emissions related to urinary nitrogen waste are addressed when information is available. The main families considered are plant lipids and plant secondary compounds (tannins, saponins, halogenated compounds and essential oils). The effects of these compounds in vivo, their mechanisms of action, and their potential adoption on farms are discussed, and future trends in this research area are highlighted.


2021 ◽  
Author(s):  
Pierre Ganault ◽  
Johanne Nahmani ◽  
Yvan Capowiez ◽  
Isabelle Bertrand ◽  
Bruno Buatois ◽  
...  

<p>Accelerating climate change and biodiversity loss calls for agricultural practices that can sustain productivity with lower greenhouse gas emissions while maintaining biodiversity. Biodiversity-friendly agricultural practices have been shown to increase earthworm populations, but according to a recent meta-analyses, earthworms could increase soil CO<sub>2</sub> and N<sub>2</sub>O emissions by 33 and 42%, respectively. However, to date, many studies reported idiosyncratic and inconsistent effects of earthworms on greenhouse gases, indicating that the underlying mechanisms are not fully understood. Here we report the effects of earthworms (anecic, endogeic and their combination) with or without plants on CO<sub>2</sub> and N<sub>2</sub>O emissions in the presence of soil-moisture fluctuations from a mesocosms experiment. The experimental set-up was explicitly designed to account for the engineering effect of earthworms (i.e. burrowing) and investigate the consequences on soil macroporosity, soil water dynamic, and microbial activity. We found that plants reduced N<sub>2</sub>O emissions by 19.80% and that relative to the no earthworm control, the cumulative N<sub>2</sub>O emissions were 17.04, 34.59 and 44.81% lower in the anecic, both species and endogeic species, respectively. CO<sub>2</sub> emissions were not significantly affected by the plants or earthworms but depended on the interaction between earthworms and soil water content, an interaction that was also observed for the N<sub>2</sub>O emissions. Soil porosity variables measured by X-ray tomography suggest that the earthworm effects on CO<sub>2</sub> and N<sub>2</sub>O emissions were mediated by the burrowing patterns affecting the soil aeration and water status. N<sub>2</sub>O emissions decreased with the volume occupied by macropores in the deeper soil layer, whereas CO<sub>2</sub> emissions decreased with the macropore volume in the top soil layer. This study suggests that experimental setups without plants and in containers where the earthworm soil engineering effects via burrowing and casting on soil water status are minimized may be responsible, at least in part, for the reported positive earthworm effects on greenhouse gases.</p>


Sign in / Sign up

Export Citation Format

Share Document