scholarly journals The Dynamics of Nitrous Oxide Emission from the Use of Mineral Fertilizers in Russia

2001 ◽  
Vol 1 ◽  
pp. 336-342 ◽  
Author(s):  
A AA. Romanovskaya ◽  
A M.L. Gytarsky ◽  
A R.T. Karaban ◽  
A D.E. Konyushkov ◽  
A I.M. Nazarov

The intensity of nitrous oxide (N2O) emission was considered based on literature data on the single input of mineral N (nitrogen) fertilizers into different agricultural soil types in Russia. Ambient environmental factors exert a combined effect on the process of gaseous nitrogen formation from fertilizers applied. To reduce the uncertainty of estimates as much as possible, only experimental results obtained under conditions similar to natural were selected for the assessments. Mineral nitric fertilizers were applied to soil at a rate of 40 to 75 kg/ha and the N2O emissions were measured for approximately 140 days. Daily average emission values varied from 0.08 to 0.45% of fertilizer nitrogen. Correspondingly, 1.26 and 2.38% of fertilizer nitrogen were emitted as N2O from chernozems and soddy podzols. In 1990, the use of fertilizers in Russian agricultural practices for 53 Gg N2O-N, which equates to approximately 6.1% of global nitrous oxide emissions from nitric fertilizers. Later, the emission dropped because of a decrease in the input of nitric fertilizers to agricultural crops, and in 1998, it constituted just 20.5% of the 1990 level. In the period from 2008 to 2012, the nitrous oxide emission is expected to vary from 0.5 to 65.0 Gg N2O-N due to possible changes in national agricultural development. In the most likely scenario, the use of mineral fertilizers in Russia will account for approximately 34 to 40 Gg N2O-N emissions annually from 2008�2012.

Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 165 ◽  
Author(s):  
Ram C. Dalal ◽  
Weijin Wang ◽  
G. Philip Robertson ◽  
William J. Parton

Increases in the concentrations of greenhouse gases, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and halocarbons in the atmosphere due to human activities are associated with global climate change. The concentration of N2O has increased by 16% since 1750. Although atmospheric concentration of N2O is much smaller (314 ppb in 1998) than of CO2 (365 ppm), its global warming potential (cumulative radiative forcing) is 296 times that of the latter in a 100-year time horizon. Currently, it contributes about 6% of the overall global warming effect but its contribution from the agricultural sector is about 16%. Of that, almost 80% of N2O is emitted from Australian agricultural lands, originating from N fertilisers (32%), soil disturbance (38%), and animal waste (30%). Nitrous oxide is primarily produced in soil by the activities of microorganisms during nitrification, and denitrification processes. The ratio of N2O to N2 production depends on oxygen supply or water-filled pore space, decomposable organic carbon, N substrate supply, temperature, and pH and salinity. N2O production from soil is sporadic both in time and space, and therefore, it is a challenge to scale up the measurements of N2O emission from a given location and time to regional and national levels.Estimates of N2O emissions from various agricultural systems vary widely. For example, in flooded rice in the Riverina Plains, N2O emissions ranged from 0.02% to 1.4% of fertiliser N applied, whereas in irrigated sugarcane crops, 15.4% of fertiliser was lost over a 4-day period. Nitrous oxide emissions from fertilised dairy pasture soils in Victoria range from 6 to 11 kg N2O-N/ha, whereas in arable cereal cropping, N2O emissions range from <0.01% to 9.9% of N fertiliser applications. Nitrous oxide emissions from soil nitrite and nitrates resulting from residual fertiliser and legumes are rarely studied but probably exceed those from fertilisers, due to frequent wetting and drying cycles over a longer period and larger area. In ley cropping systems, significant N2O losses could occur, from the accumulation of mainly nitrate-N, following mineralisation of organic N from legume-based pastures. Extensive grazed pastures and rangelands contribute annually about 0.2 kg N/ha as N2O (93 kg/ha per year CO2-equivalent). Tropical savannas probably contribute an order of magnitude more, including that from frequent fires. Unfertilised forestry systems may emit less but the fertilised plantations emit more N2O than the extensive grazed pastures. However, currently there are limited data to quantify N2O losses in systems under ley cropping, tropical savannas, and forestry in Australia. Overall, there is a need to examine the emission factors used in estimating national N2O emissions; for example, 1.25% of fertiliser or animal-excreted N appearing as N2O (IPCC 1996). The primary consideration for mitigating N2O emissions from agricultural lands is to match the supply of mineral N (from fertiliser applications, legume-fixed N, organic matter, or manures) to its spatial and temporal needs by crops/pastures/trees. Thus, when appropriate, mineral N supply should be regulated through slow-release (urease and/or nitrification inhibitors, physical coatings, or high C/N ratio materials) or split fertiliser application. Also, N use could be maximised by balancing other nutrient supplies to plants. Moreover, non-legume cover crops could be used to take up residual mineral N following N-fertilised main crops or mineral N accumulated following legume leys. For manure management, the most effective practice is the early application and immediate incorporation of manure into soil to reduce direct N2O emissions as well as secondary emissions from deposition of ammonia volatilised from manure and urine.Current models such as DNDC and DAYCENT can be used to simulate N2O production from soil after parameterisation with the local data, and appropriate modification and verification against the measured N2O emissions under different management practices.In summary, improved estimates of N2O emission from agricultural lands and mitigation options can be achieved by a directed national research program that is of considerable duration, covers sampling season and climate, and combines different techniques (chamber and micrometeorological) using high precision analytical instruments and simulation modelling, under a range of strategic activities in the agriculture sector.


2021 ◽  
Author(s):  
Hanxiong Song ◽  
Changhui Peng ◽  
Kerou Zhang ◽  
Qiuan Zhu

Abstract. Nitrous oxide (N2O) emissions from croplands are one of the most important greenhouse gas sources, and it is difficult to simulate on a large scale. In order to simulate N2O emissions from global croplands, a new version of the process-based TRIPLEX-GHG model was developed by coupling the major agricultural activities. The coefficient of the NO3− consumption rate for denitrification (COEdNO3) was found to be the most sensitive parameter based on sensitivity analysis, and it was calibrated using field data from 39 observation sites across major croplands globally. The model performed well when simulating the magnitude of the daily N2O emissions and was able to capture the temporal patterns of the N2O emissions. The COEdNO3 ranged from 0.01 to 0.05, and the continental mean of the parameter was used for the model validation. The validation results indicate that the means of the measured daily N2O fluxes during the experiment periods are highly correlated with the modeled results (R2 = 0.87). Consequently, our model simulation results demonstrate that the new version of the TRIPLEX-GHG model can reliably simulate N2O emissions from various croplands at the global scale.


2008 ◽  
Vol 88 (2) ◽  
pp. 219-227 ◽  
Author(s):  
D L Burton ◽  
Xinhui Li ◽  
C A Grant

Fertilizer nitrogen use is estimated to be a significant source of nitrous oxide (N2O) emissions in western Canada. These estimates are based primarily on modeled data, as there are relatively few studies that provide direct measures of the magnitude of N2O emissions and the influence of N source on N2O emissions. This study examined the influence of nitrogen source (urea, coated urea, urea with urease inhibitor, and anhydrous ammonia), time of application (spring, fall) and method of application (broadcast, banded) on nitrous oxide emissions on two Black Chernozemic soils located near Winnipeg and Brandon Manitoba. The results of this 3-yr study demonstrated consistently that the rate of fertilizer-induced N2O emissions under Manitoba conditions was lower than the emissions estimated using Intergovernmental Panel on Climate Change (IPCC) coefficients. The Winnipeg site tended to have higher overall N2O emissions (1.7 kg N ha-1) and fertilizer-induced emissions (~0.8% of applied N) than did the Brandon site (0.5 kg N ha-1), representing ~0.2% of applied N. N2O emissions in the first year of the study were much higher than in subsequent years. Both the site and year effects likely reflected differences in annual precipitation. The N2O emissions associated with the use of anhydrous ammonia as a fertilizer source were no greater than emissions with urea. Fall application of nitrogen fertilizer tended to result in marginally greater N2O emissions than did spring application, but these differences were neither large nor consistent. Key words: Nitrogen fertilizer, nitrous oxide emissions, nitrate intensity, anhydrous ammonia, urea


2021 ◽  
Author(s):  
Jarno Rouhiainen ◽  
Dorothee Neukam ◽  
Rene Dechow ◽  
Rima Rabah Nasser ◽  
Henning Kage

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;Nitrous oxide is an important greenhouse gas. In Germany, around 50% of annual nitrous oxide emissions originate from managed agricultural land. Among other options, the mitigation of nitrous oxide emissions from arable land is one important measure to reduce greenhouse gas emissions of the agricultural sector. Several mitigation options have been examined including reduced application of nitrogen fertilizers, timing of fertilizer applications, crop residue management, pH management or application of nitrification inhibitors. Depending on the underlying natural conditions (soil, climate), these measures vary in their mitigation efficiency.&lt;/p&gt; &lt;p&gt;Suitable methods are required to evaluate and quantify mitigation strategies for nitrous oxide emissions at a regional and national scale. For this purpose, several model approaches have been developed ranging from simple stochastic equations to sophisticated process-based models. Because of their reduced input requirements, stochastic approaches like emission factor approaches are common to quantify nitrous oxide emissions and mitigation effects while process based models are promising tools to describe interactions of natural conditions and anthropogenic activities. They have the potential to be more accurate and informative.&lt;/p&gt; &lt;p&gt;However, due to the complex nature of N2O producing processes in croplands and the high spatial and temporal variability of N2O fluxes the portability of model developments from one site to another site or the validity of upscaling methods are questionable. We collected available field experimental data measuring nitrous oxide emissions to improve and analyze the prediction accuracy of model approaches in Germany, recently with data of 19 sites and 1251 site years in total and focus on the crop types wheat, maize and rape.&lt;/p&gt; &lt;p&gt;Here, we present this data set and show results of model applications and a multi-site sensitivity analyses with the process based model DNDCv.Can. Contrary to other DNDC versions, DNDCvCAN allows to modify a range of internal parameters.&lt;/p&gt; &lt;p&gt;We performed sensitivity analyses based on the Morris method by varying 45 model parameters. Each participating site was modeled for a three years period and the simulations were repeated for each parameter 500 times, resulting to 23000 simulations per site. Highest impact on N2O emissions were caused by soil concentrations of humads, humus and black carbon and their related C/N ratios. Surprisingly, N2O emissions showed only minor sensitivites in general on hydrological parameters and&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;on parameters related to N cycling in soil profile. Parameters controling macropore flow, nitrifier growth and denitrifier growth made here an exception. Sets of ranked most sensitive parameters varied between sites showing that multi-site sensitivity analyses might be helpful to identify global and local parameters for model calibration and help to assess regional mitigation effects.&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


Author(s):  
Koloman Krištof ◽  
Tomáš Šima ◽  
Ladislav Nozdrovický ◽  
Ján Jobbágy ◽  
Jan Mareček ◽  
...  

Fertilizers are an important tool to maintain soil fertility and as an enhancement for the efficient crop production. The system of fertilizers application affects the final dose and commonly causes local overdosing or insuficient spatial distribution of fertilizers which are a very important source of nitrous oxide emissions (N2O) from the soil into the atmospher observation of such phenomenon are among the key factors defining environmental impacts of agriculture. A study was conducted to observe the effect of application dose of fertilizer on N2O emission from the soil. CAN (Calcium ammonium nitrate – consist of 27 % nitrogen) was spread by a fertiliser spreader Kuhn Axera 1102 H-EMC aggregated with a tractor John Deere 6150 M. Incorporation of fertilizer into the soil was done by power harrow Pöttinger Lion 302. The application dose was set at 0, 100, 200 and 300 kg.ha–1 while monitoring points were selected at the base of this application doses in respective places. Measurements were conducted at time intervals 7, 14, 21 and 28 days after fertiliser application and following incorporation. Nitrous oxide emissions were measured by field gas monitor set INNOVA consisting of a photoacoustic gas monitor INNOVA 1412 and a multipoint sampler INNOVA 1309. Statistically significant differences was found among time intervals and among the application dose (p > 0.05). It was observed that the application dose of selected fertilizers has the direct effect on nitrous oxide (N2O) emissions released from soil into the atmosphere. An increase of greenhouse gas emissions was observed in range from 0.83 to 152.33 %. It can be concluded that the local overdose of fertilizers negatively affects environmental impact of agricultural practices at greenhouse gas emissions (GHGs).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2012 ◽  
Vol 9 (8) ◽  
pp. 2989-3002 ◽  
Author(s):  
K. Schelde ◽  
P. Cellier ◽  
T. Bertolini ◽  
T. Dalgaard ◽  
T. Weidinger ◽  
...  

Abstract. Nitrous oxide (N2O) emissions from agricultural land are variable at the landscape scale due to variability in land use, management, soil type, and topography. A field experiment was carried out in a typical mixed farming landscape in Denmark, to investigate the main drivers of variations in N2O emissions, measured using static chambers. Measurements were made over a period of 20 months, and sampling was intensified during two weeks in spring 2009 when chambers were installed at ten locations or fields to cover different crops and topography and slurry was applied to three of the fields. N2O emissions during spring 2009 were relatively low, with maximum values below 20 ng N m−2 s−1. This applied to all land use types including winter grain crops, grasslands, meadows, and wetlands. Slurry application to wheat fields resulted in short-lived two-fold increases in emissions. The moderate N2O fluxes and their moderate response to slurry application were attributed to dry soil conditions due to the absence of rain during the four previous weeks. Cumulative annual emissions from two arable fields that were both fertilized with mineral fertilizer and manure were large (17 kg N2O-N ha−1 yr−1 and 5.5 kg N2O-N ha−1 yr−1) during the previous year when soil water conditions were favourable for N2O production during the first month following fertilizer application. Our findings confirm the importance of weather conditions as well as nitrogen management on N2O fluxes.


Sign in / Sign up

Export Citation Format

Share Document