Multi-surface Cyclic Plasticity Sand Model with Lode Angle Effect

2007 ◽  
Vol 26 (3) ◽  
pp. 335-348 ◽  
Author(s):  
Zhaohui Yang ◽  
Ahmed Elgamal
2019 ◽  
Vol 7 (4) ◽  
pp. 1166-1177
Author(s):  
Zhenlong Song ◽  
Minghui Li ◽  
Guangzhi Yin ◽  
Pathegama Gamage Ranjith ◽  
Chao Liu

2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


2011 ◽  
Vol 56 (2) ◽  
pp. 503-508 ◽  
Author(s):  
R. Pęcherski ◽  
P. Szeptyński ◽  
M. Nowak

An Extension of Burzyński Hypothesis of Material Effort Accounting for the Third Invariant of Stress Tensor The aim of the paper is to propose an extension of the Burzyński hypothesis of material effort to account for the influence of the third invariant of stress tensor deviator. In the proposed formulation the contribution of the density of elastic energy of distortion in material effort is controlled by Lode angle. The resulted yield condition is analyzed and possible applications and comparison with the results known in the literature are discussed.


2015 ◽  
Vol 57 (2) ◽  
pp. 171-175
Author(s):  
Jeremie Bouquerel ◽  
Foriane Léaux ◽  
Jean-Bernard Vogt ◽  
Frederic Palleschi

2004 ◽  
Vol 46 (7-8) ◽  
pp. 363-373
Author(s):  
Hai Ni ◽  
Zhirui Wang

Sign in / Sign up

Export Citation Format

Share Document