Comparative population structure of Chinese sumac aphid Schlechtendalia chinensis and its primary host-plant Rhus chinensis

Genetica ◽  
2007 ◽  
Vol 132 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Zhumei Ren ◽  
Bin Zhu ◽  
Dingjiang Wang ◽  
Enbo Ma ◽  
Deming Su ◽  
...  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Natalie M. Bowman ◽  
Seth Congdon ◽  
Tisungane Mvalo ◽  
Jaymin C. Patel ◽  
Veronica Escamilla ◽  
...  

Insects ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 197 ◽  
Author(s):  
Łukowski ◽  
Janek ◽  
Baraniak ◽  
Walczak ◽  
Karolewski

Recently in Poland, cases of host expansion have frequently been observed in the typically monophagous bird-cherry ermine moth (Yponomeuta evonymella), which has moved from its native host plant, bird cherry (Prunus padus), to a new, widely distributed plant that is invasive in Europe, black cherry (P. serotina). We attempted to verify the reasons behind this host change in the context of the enemy-free space hypothesis by focusing on parasitoids attacking larval Y. evonymella on one of three host plant variants: The primary host, P. padus; initially P. padus and later P. serotina (P. padus/P. serotina); or the new host, P. serotina. This experiment investigated if changing the host plant could be beneficial to Y. evonymella in terms of escaping from harmful parasitoids and improving survival rate. We identified nine species of parasitoids that attack larval Y. evonymella, and we found that the number of parasitoid species showed a downward trend from the primary host plant to the P. padus/P. serotina combination to the new host plant alone. We observed a significant difference among variants in relation to the percentage of cocoons killed by specific parasitoids, but no effects of non-specific parasitoids or other factors. Total mortality did not significantly differ (ca. 37%) among larval rearing variants. Changing the host plant caused differences in the structure of the parasitoid complex of Y. evonymella but did not improve its survival rate. This study does not indicate that the host expansion of Y. evonymella is associated with the enemy-free space hypothesis; we therefore discuss alternative scenarios that may be more likely.


Zootaxa ◽  
2008 ◽  
Vol 1728 (1) ◽  
pp. 1 ◽  
Author(s):  
KARL N. MAGNACCA ◽  
DAVID FOOTE ◽  
PATRICK M. O’GRADY

The Hawaiian Drosophilidae is one of the best examples of rapid speciation in nature. Nearly 1,000 species of endemic drosophilids have evolved in situ in Hawaii since a single colonist arrived over 25 million years ago. A number of mechanisms, including ecological adaptation, sexual selection, and geographic isolation, have been proposed to explain the evolution of this hyperdiverse group of species. Here, we examine the known ecological associations of 326 species of endemic Hawaiian Drosophilidae in light of the phylogenetic relationships of these species. Our analysis suggests that the long-accepted belief of strict ecological specialization in this group does not hold for all taxa. While many species have a primary host plant family, females will also oviposit on non-preferred host plant taxa. Host shifting is fairly common in some groups, especially the grimshawi and modified mouthparts species groups of Drosophila, and the Scaptomyza subgenus Elmomyza. Associations with types of substrates (bark, leaves, flowers) are more evolutionarily conserved than associations with host plant families. These data not only give us insight into the role ecology has played in the evolution of this large group, but can help in making decisions about the management of rare and endangered host plants and the insects that rely upon them for survival.


2018 ◽  
Vol 20 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Rohit Chakravarty ◽  
Balaji Chattopadhyay ◽  
Uma Ramakrishnan ◽  
Arjun Sivasundar

2019 ◽  
Vol 166 (2) ◽  
Author(s):  
Claudia Junge ◽  
Stephen C. Donnellan ◽  
Charlie Huveneers ◽  
Corey J. A. Bradshaw ◽  
Alexis Simon ◽  
...  

Evolution ◽  
1993 ◽  
Vol 47 (5) ◽  
pp. 1611-1616 ◽  
Author(s):  
Yannis Michalakis ◽  
Andrew W. Sheppard ◽  
Valérie Noël ◽  
Isabelle Olivieri

Sign in / Sign up

Export Citation Format

Share Document