scholarly journals Reduced microsatellite heterozygosity in island endemics supports the role of long-term effective population size in avian microsatellite diversity

Genetica ◽  
2010 ◽  
Vol 138 (11-12) ◽  
pp. 1271-1276 ◽  
Author(s):  
Austin L. Hughes
Heredity ◽  
2016 ◽  
Vol 117 (4) ◽  
pp. 290-299 ◽  
Author(s):  
A-K Mueller ◽  
N Chakarov ◽  
O Krüger ◽  
J I Hoffman

2015 ◽  
Vol 97 (2) ◽  
pp. 436-443 ◽  
Author(s):  
Catherine J. Collins ◽  
B. Louise Chilvers ◽  
Matthew Taylor ◽  
Bruce C. Robertson

Abstract Marine mammal species were exploited worldwide during periods of commercial sealing in the 18th and 19th centuries. For many of these species, an estimate of the pre-exploitation abundance of the species is lacking, as historical catch records are generally scarce and inaccurate. Genetic estimates of long-term effective population size provide a means to estimate the pre-exploitation abundance. Here, we apply genetic methods to estimate the long-term effective population size of the subantarctic lineage of the New Zealand sea lion (NZ sea lion), Phocarctos hookeri . This species is predominantly restricted to the subantarctic islands, south of mainland New Zealand, following commercial sealing in the 19th century. Today, the population consists of ~9,880 animals and population growth is slow. Auckland Island breeding colonies of NZ sea lion are currently impacted by commercial trawl fisheries via regular sea lion deaths as bycatch. In order to estimate sustainable levels of bycatch, an estimate of the population’s carrying capacity ( K ) is required. We apply the genetically estimated long-term effective population size of NZ sea lions as a proxy for the estimated historical carrying capacity of the subantarctic population. The historical abundance of subantarctic NZ sea lions was significantly higher than the target values of K employed by the contemporary management. The current management strategy may allow unsustainable bycatch levels, thereby limiting the recovery of the NZ sea lion population toward historical carrying capacity.


1989 ◽  
Vol 46 (6) ◽  
pp. 928-931 ◽  
Author(s):  
Jan Hennsng L'abée-Lund

The spawning population of Atlantic salmon, Salmo salar, (mature male parr and adults (anadromous salmon)) were assessed in the River Baevra, central Norway, when the river was treated with rotenone in November 1986. The spawning population of adults consisted of 15 males and 19 females. The spawning population of males consisted of 167 mature male parr per adult male. The effective population size of adults was small; Na = 33.5 individuals. The presence of mature male parr theoretically increased the effective population size to Na = 71.7 individuals. This increase indicated that mature male parr brought the effective population size above a recommended minimum (Na = 50) to ensure long term viability.


Sign in / Sign up

Export Citation Format

Share Document