scholarly journals Perturbative quantum gravity in analogy with Fermi theory of weak interactions using bosonic tensor fields

2005 ◽  
Vol 37 (1) ◽  
pp. 191-205 ◽  
Author(s):  
Leonardo Modesto
2012 ◽  
Vol 27 (13) ◽  
pp. 1250075 ◽  
Author(s):  
MIR FAIZAL

In this paper, we will study perturbative quantum gravity on supermanifolds with both noncommutativity and non-anticommutativity of spacetime coordinates. We shall first analyze the BRST and the anti-BRST symmetries of this theory. Then we will also analyze the effect of shifting all the fields of this theory in background field method. We will construct a Lagrangian density which apart from being invariant under the extended BRST transformations is also invariant under on-shell extended anti-BRST transformations. This will be done by using the Batalin–Vilkovisky (BV) formalism. Finally, we will show that the sum of the gauge-fixing term and the ghost term for this theory can be elegantly written down in superspace with a two Grassmann parameter.


2013 ◽  
Vol 28 (07) ◽  
pp. 1350022 ◽  
Author(s):  
ROBERTO ONOFRIO

We conjecture that weak interactions are peculiar manifestations of quantum gravity at the Fermi scale, and that the Fermi constant is related to the Newtonian constant of gravitation. In this framework one may understand the violations of fundamental symmetries by the weak interactions, in particular parity violations, as due to fluctuations of the spacetime geometry at a Planck scale coinciding with the Fermi scale. As a consequence, gravitational phenomena should play a more important role in the microworld, and experimental settings are suggested to test this hypothesis.


2011 ◽  
Vol 84 (10) ◽  
Author(s):  
Ratindranath Akhoury ◽  
Ryo Saotome ◽  
George Sterman

Author(s):  
Iosif L. Buchbinder ◽  
Ilya L. Shapiro

This is a short chapter summarizing the main results concerning the renormalization group in models of pure quantum gravity, without matter fields. The chapter starts with a critical analysis of non-perturbative renormalization group approaches, such as the asymptotic safety hypothesis. After that, it presents solid one-loop results based on the minimal subtraction scheme in the one-loop approximation. The polynomial models that are briefly reviewed include the on-shell renormalization group in quantum general relativity, and renormalization group equations in fourth-derivative quantum gravity and superrenormalizable models. Special attention is paid to the gauge-fixing dependence of the renormalization group trajectories.


Sign in / Sign up

Export Citation Format

Share Document