fundamental symmetries
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. J. Baker ◽  
W. Bertsche ◽  
A. Capra ◽  
C. L. Cesar ◽  
M. Charlton ◽  
...  

AbstractThe positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be+ ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries.


Author(s):  
Alexandre Furtado Neto

A new charge is postulated in a finite, closed, Euclidean discrete space to restore all fundamental symmetries on a global level. Gravity emerges as a residual effect of the electromagnetic force in this scenario, resulting in a deterministic toy universe driven by a single input parameter. Randomness is identified using a Chaintin argument. Aleph0 definite value is tied to the size of the universe. This is not an interpretation of Quantum Mechanics, but a deeper attempt to describe nature.


2021 ◽  
Author(s):  
Sergei N. Vergeles ◽  
Nikolay N. Nikolaev ◽  
Yurii N. Obukhov ◽  
Aleksandr Ya. Silenko ◽  
Oleg V. Teryaev

Author(s):  
Sergei N. Vergeles ◽  
Nikolay N. Nikolaev ◽  
Yurii N. Obukhov ◽  
Aleksandr Ya. Silenko ◽  
Oleg V. Teryaev

2021 ◽  
Vol 9 ◽  
Author(s):  
Andrei Neacsu ◽  
Vasile Alin Sevestrean ◽  
Sabin Stoica

Since the experimental discovery of neutrino oscillations, the search for the neutrinoless double beta (0νββ) decay has intensified greatly, as this particular decay mode, if experimentally discovered, could offer a testing ground for Beyond Standard Model (BSM) theories related to the yet hidden fundamental properties of neutrinos and the possibility of violating of some fundamental symmetries. In this work we make a brief review of the nuclear matrix elements and phase space factors calculations performed mainly by our group. Next, using these calculations and the most recent experimental half-life limits, we revise the constraints on the BSM parameters violating the lepton number corresponding to four mechanisms that could contribute to 0νββ decay. Finally, using the values obtained for the BSM parameters from one of the most sensitive double-beta decay experiments, we provide a comparison with the sensitivities of other experiments.


2021 ◽  
Vol 57 (4) ◽  
Author(s):  
G. Barucca ◽  
F. Davì ◽  
G. Lancioni ◽  
P. Mengucci ◽  
L. Montalto ◽  
...  

AbstractThe antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: $${\bar{p}}p \rightarrow {\bar{\varLambda }}\varLambda $$ p ¯ p → Λ ¯ Λ and $${\bar{p}}p \rightarrow {\bar{\varXi }}^+\varXi ^-$$ p ¯ p → Ξ ¯ + Ξ - . The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA.


2021 ◽  
Vol 35 (04) ◽  
pp. 2130002
Author(s):  
Matteo Baggioli ◽  
Alessio Zaccone

Glasses and disordered materials are known to display anomalous features in the density of states, in the specific heat and in thermal transport. Nevertheless, in recent years, the question whether these properties are really anomalous (and peculiar of disordered systems) or rather more universal than previously thought, has emerged. New experimental and theoretical observations have questioned the origin of the boson peak (BP) and the linear in T specific heat exclusively from disorder and two-level systems (TLS). The same properties have been indeed observed in ordered or minimally disordered compounds and in incommensurate structures for which the standard explanations are not applicable. Using the formal analogy between phason modes (e.g., in quasicrystals and incommensurate lattices) and diffusions, and between amplitude modes and optical phonons, we suggest the existence of a more universal physics behind these properties. In particular, we strengthen the idea that linear in T specific heat is linked to low energy diffusive modes resulting from fundamental symmetries, and that a BP excess can be induced in crystals either by gapped optical-like modes and/or by anharmonic diffusive (Akhiezer) damping.


Sign in / Sign up

Export Citation Format

Share Document