scholarly journals Kinematic projective quantum states for loop quantum gravity coupled to tensor fields

2017 ◽  
Vol 58 (4) ◽  
pp. 042302 ◽  
Author(s):  
Andrzej Okołów
2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Abhishek Majhi

We establish the link between the thermodynamics and the quantum theory of black hole horizons through the construction of the thermodynamic partition function, partly based on some physically plausible arguments, by beginning from the description of quantum states of the horizon, considering loop quantum gravity (LQG) as the underlying theory. Although the effective “thermalized” form of the partition function has been previously used in the literature to study the effect of thermal fluctuations of the black hole horizon, nonetheless the direct link to any existing quantum theory (which is here taken to be LQG), especially a derivation of the partition function from the quantum states of the horizon, appears to be hitherto absent. This work is an attempt to bridge this small, but essential, gap that appears to be present between the existing literature of quantum theory and thermodynamics of black holes. Furthermore, it may be emphasized that this work isonlyconcerned with themetric independentapproaches to black hole thermodynamics.


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
S. Ariwahjoedi ◽  
I. Husin ◽  
I. Sebastian ◽  
F. P. Zen

2015 ◽  
Vol 24 (11) ◽  
pp. 1530028 ◽  
Author(s):  
Steven Carlip ◽  
Dah-Wei Chiou ◽  
Wei-Tou Ni ◽  
Richard Woodard

We present a bird's-eye survey on the development of fundamental ideas of quantum gravity, placing emphasis on perturbative approaches, string theory, loop quantum gravity (LQG) and black hole thermodynamics. The early ideas at the dawn of quantum gravity as well as the possible observations of quantum gravitational effects in the foreseeable future are also briefly discussed.


2009 ◽  
Vol 807 (3) ◽  
pp. 591-624 ◽  
Author(s):  
Eugenio Bianchi

2011 ◽  
Vol 52 (5) ◽  
pp. 052502 ◽  
Author(s):  
Laurent Freidel ◽  
Etera R. Livine

1992 ◽  
Vol 01 (03n04) ◽  
pp. 439-523 ◽  
Author(s):  
HIDEO KODAMA

The basic features of the complex canonical formulation of general relativity and the recent developments in the quantum gravity program based on it are reviewed. The exposition is intended to be complementary to the review articles already available and some original arguments are included. In particular the conventional treatment of the Hamiltonian constraint and quantum states in the canonical approach to quantum gravity is criticized and a new formulation is proposed.


Sign in / Sign up

Export Citation Format

Share Document