On the weak field approximation of the de Sitter gauge theory of gravity

2012 ◽  
Vol 45 (1) ◽  
pp. 143-153
Author(s):  
Meng-Sen Ma ◽  
Chao-Guang Huang

2007 ◽  
Vol 04 (08) ◽  
pp. 1239-1257 ◽  
Author(s):  
CARLOS CASTRO

A novel Chern–Simons E8 gauge theory of gravity in D = 15 based on an octicE8 invariant expression in D = 16 (recently constructed by Cederwall and Palmkvist) is developed. A grand unification model of gravity with the other forces is very plausible within the framework of a supersymmetric extension (to incorporate spacetime fermions) of this Chern–Simons E8 gauge theory. We review the construction showing why the ordinary 11D Chern–Simons gravity theory (based on the Anti de Sitter group) can be embedded into a Clifford-algebra valued gauge theory and that an E8 Yang–Mills field theory is a small sector of a Clifford (16) algebra gauge theory. An E8 gauge bundle formulation was instrumental in understanding the topological part of the 11-dim M-theory partition function. The nature of this 11-dim E8 gauge theory remains unknown. We hope that the Chern–Simons E8 gauge theory of gravity in D = 15 advanced in this work may shed some light into solving this problem after a dimensional reduction.





2005 ◽  
Vol 14 (12) ◽  
pp. 2051-2067 ◽  
Author(s):  
MATT VISSER

In this article I present a simple Newtonian heuristic for motivating a weak-field approximation for the spacetime geometry of a point particle. The heuristic is based on Newtonian gravity, the notion of local inertial frames (the Einstein equivalence principle), plus the use of Galilean coordinate transformations to connect the freely falling local inertial frames back to the "fixed stars." Because of the heuristic and quasi-Newtonian manner in which the specific choice of spacetime geometry is motivated, we are at best justified in expecting it to be a weak-field approximation to the true spacetime geometry. However, in the case of a spherically symmetric point mass the result is coincidentally an exact solution of the full vacuum Einstein field equations — it is the Schwarzschild geometry in Painlevé–Gullstrand coordinates. This result is much stronger than the well-known result of Michell and Laplace whereby a Newtonian argument correctly estimates the value of the Schwarzschild radius — using the heuristic presented in this article one obtains the entire Schwarzschild geometry. The heuristic also gives sensible results — a Riemann flat geometry — when applied to a constant gravitational field. Furthermore, a subtle extension of the heuristic correctly reproduces the Reissner–Nordström geometry and even the de Sitter geometry. Unfortunately the heuristic construction is not truly generic. For instance, it is incapable of generating the Kerr geometry or anti-de Sitter space. Despite this limitation, the heuristic does have useful pedagogical value in that it provides a simple and direct plausibility argument (not a derivation) for the Schwarzschild geometry — suitable for classroom use in situations where the full power and technical machinery of general relativity might be inappropriate. The extended heuristic provides more challenging problems — suitable for use at the graduate level.



2007 ◽  
Vol 47 (5) ◽  
pp. 843-846 ◽  
Author(s):  
Gheorghe Zet ◽  
Camelia Popa ◽  
Doina Partenie


1998 ◽  
Vol 245 (1-2) ◽  
pp. 31-34 ◽  
Author(s):  
A. Barros ◽  
C. Romero










Sign in / Sign up

Export Citation Format

Share Document