Identification of fucosylated haptoglobin‐producing cells in pancreatic cancer tissue and its molecular mechanism

Author(s):  
Nami Ito ◽  
Momoko Yamada ◽  
Koichi Morishita ◽  
Satoshi Nojima ◽  
Kei Motooka ◽  
...  
Author(s):  
Kosei Nakajima ◽  
Yoshinori Ino ◽  
Chie Naito ◽  
Satoshi Nara ◽  
Mari Shimasaki ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1063 ◽  
Author(s):  
Kıvanç Görgülü ◽  
Kalliope N. Diakopoulos ◽  
Ezgi Kaya-Aksoy ◽  
Katrin J. Ciecielski ◽  
Jiaoyu Ai ◽  
...  

Pancreatic cancer is one of the deadliest cancer types urgently requiring effective therapeutic strategies. Autophagy occurs in several compartments of pancreatic cancer tissue including cancer cells, cancer associated fibroblasts, and immune cells where it can be subjected to a multitude of stimulatory and inhibitory signals fine-tuning its activity. Therefore, the effects of autophagy on pancreatic carcinogenesis and progression differ in a stage and context dependent manner. In the initiation stage autophagy hinders development of preneoplastic lesions; in the progression stage however, autophagy promotes tumor growth. This double-edged action of autophagy makes it a hard therapeutic target. Indeed, autophagy inhibitors have not yet shown survival improvements in clinical trials, indicating a need for better evaluation of existing results and smarter targeting techniques. Clearly, the role of autophagy in pancreatic cancer is complex and many aspects have to be considered when moving from the bench to the bedside.


2019 ◽  
Author(s):  
Jiasheng Xu ◽  
Kaili Liao ◽  
ZHONGHUA FU ◽  
ZHENFANG XIONG

Abstract Objective: To screen and analyze differentially expressed genes in pancreatic carcinoma tissues taken from Mongolian and Han patients by Affymetrix Genechip. Methods: Pancreatic ductal cell carcinoma tissues were collected from the Mongolian and Han patients undergoing resection in the Second Affiliated Hospital of Nanchang University from March 2015 to May 2018 and the total RNA was extracted. Differentially expressed genes were selected from the total RNA qualified by Nanodrop 2000 and Agilent 2100 using Affymetrix and a cartogram was drawn; The gene ontology (GO) analysis and Pathway analysis were used for the collection and analysis of biological information of these differentially expressed genes. Finally, some differentially expressed genes were verified by real-time PCR. Results: Through the microarray analysis of gene expression, 970 differentially expressed genes were detected by comparing pancreatic cancer tissue samples between Mongolian and Han patients. A total of 257 genes were significantly up-regulated in pancreatic cancer tissue samples in Mongolian patients; while a total of 713 genes were down-regulated. In the Gene Ontology database, 815 differentially expressed genes were identified with clear GO classification, and CPB1 gene showed the highest increase in expression level (multiple difference: 31.76). The pathway analysis detected 28 signaling pathways that included these differentially expressed genes, involving a total of 178 genes. Among these pathways, the enrichment of differentially expressed genes in the FAK signaling pathway was the strongest and COL11A1 gene showed the highest multiple difference (multiple difference: 5.02). The expression of differentially expressed genes CPB1, COL11A1、ITGA4、BIRC3、PAK4、CPA1、CLPS、PIK3CG and HLA-DPA1 determined by real-time PCR were consistent with the results of gene microarray analysis. Conclusions: The results of microarray analysis of gene expression profiles showed that there are a large number of differentially expressed genes in pancreatic cancer tissue samples comparing Mongolian and Han population. These genes are closely related to the cell proliferation, differentiation, invasion, metastasis and multi-drug resistance in pancreatic cancer. They are also involved in the regulation of multiple important signaling pathways in organisms.


2019 ◽  
Author(s):  
Jiasheng Xu ◽  
Kaili Liao ◽  
ZHONGHUA FU ◽  
ZHENFANG XIONG

Abstract Objective To screen and analyze differentially expressed genes in pancreatic carcinoma tissues taken from Mongolian and Han patients by Affymetrix Genechip. Methods: Pancreatic ductal cell carcinoma tissues were collected from the Mongolian and Han patients undergoing resection in the Second Affiliated Hospital of Nanchang University during March 2015 to May 2018 and the total RNA was extracted. Differentially expressed genes were selected from the total RNA qualified by Nanodrop 2000 and Agilent 2100 using Affymetrix and a cartogram was drawn; The gene ontology (GO) analysis and Pathway analysis were used for the collection and analysis of biological information of these differentially expressed genes. Finally, some differentially expressed genes were verified by real-time PCR. Results Through the microarray analysis of gene expression, 970 differentially expressed genes were detected by comparing pancreatic cancer tissue samples between Mongolian and Han patients. A total of 257 genes were significantly up-regulated in pancreatic cancer tissue samples in Mongolian patients;while a total of 713 genes were down-regulated. In the Gene Ontology database, 815 differentially expressed genes were identified with clear GO classification, and CPB1 gene had the highest multiple of differential expression (difference multiple: 31.76). The Pathway analysis detected 28 signaling pathways that included these differentially expressed genes, involving a total of 178 genes. Among these pathways, the enrichment of differentially expressed genes in the FAK signaling pathway was the highest and COL11A1 gene had the highest multiple difference (multiple difference: 5.02). The expressions of differentially expressed genes CPB1, COL11A1、ITGA4、BIRC3、PAK4、CPA1、CLPS、PIK3CG and HLA-DPA1 determined by real-time PCR were consistent with the results of gene chip analysis. Conclusions The results of microarray analysis of gene expression profiles showed that there are a large number of differentially expressed genes in pancreatic cancer tissue samples compared between Mongolian and Han populations. These genes are closely related to the proliferation, differentiation, invasion and metastasis and multi-drug resistance of pancreatic cancer and are involved in the regulation of multiple important signaling pathways in organisms.


2020 ◽  
Author(s):  
Jiasheng Xu ◽  
Kaili Liao ◽  
Zhonghua Fu ◽  
Zhenfang Xiong

Abstract Objective: To screen and analyze differentially expressed genes in pancreatic carcinoma tissues taken from Mongolian and Han patients by Affymetrix Genechip. Methods: Pancreatic ductal cell carcinoma tissues were collected from the Mongolian and Han patients undergoing resection in the Second Affiliated Hospital of Nanchang University from March 2015 to May 2018 and the total RNA was extracted. Differentially expressed genes were selected from the total RNA qualified by Nanodrop 2000 and Agilent 2100 using Affymetrix and a cartogram was drawn; The gene ontology (GO) analysis and Pathway analysis were used for the collection and analysis of biological information of these differentially expressed genes. Finally, some differentially expressed genes were verified by real-time PCR. Results: Through the microarray analysis of gene expression, 970 differentially expressed genes were detected by comparing pancreatic cancer tissue samples between Mongolian and Han patients. A total of 257 genes were significantly up-regulated in pancreatic cancer tissue samples in Mongolian patients; while a total of 713 genes were down-regulated. In the Gene Ontology database, 815 differentially expressed genes were identified with clear GO classification, and CPB1 gene showed the highest increase in expression level (multiple difference: 31.76). The pathway analysis detected 28 signaling pathways that included these differentially expressed genes, involving a total of 178 genes. Among these pathways, the enrichment of differentially expressed genes in the FAK signaling pathway was the strongest and COL11A1 gene showed the highest multiple difference (multiple difference: 5.02). The expression of differentially expressed genes CPB1, COL11A1、ITGA4、BIRC3、PAK4、CPA1、CLPS、PIK3CG and HLA-DPA1 determined by real-time PCR were consistent with the results of gene microarray analysis. Conclusions: The results of microarray analysis of gene expression profiles showed that there are a large number of differentially expressed genes in pancreatic cancer tissue samples comparing Mongolian and Han population. These genes are closely related to the cell proliferation, differentiation, invasion, metastasis and multi-drug resistance in pancreatic cancer. They are also involved in the regulation of multiple important signaling pathways in organisms.


2009 ◽  
Vol 15 (11) ◽  
pp. 1359 ◽  
Author(s):  
Michael A van Geer ◽  
Koert FD Kuhlmann ◽  
Conny T Bakker ◽  
Fibo JW ten Kate ◽  
Ronald PJ Oude Elferink ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document