Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China

2006 ◽  
Vol 54 (3) ◽  
pp. 563-572 ◽  
Author(s):  
He Tian-Ming ◽  
Chen Xue-Sen ◽  
Xu Zheng ◽  
Gao Jiang-Sheng ◽  
Lin Pei-Jun ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2668
Author(s):  
Zahid Nabi Sheikh ◽  
Vikas Sharma ◽  
Rafiq Ahmad Shah ◽  
Shilpa Raina ◽  
Maha Aljabri ◽  
...  

Apricot (Prunus armeniaca L.) is an important temperate fruit crop worldwide. The availability of wild apricot germplasm and its characterization through genomic studies can guide us towards its conservation, increasing productivity and nutritional composition. Therefore, in this study, we carried out the genomic characterization of 50 phenotypically variable accessions by using SSR markers in the erstwhile States of Jammu and Kashmir to reveal genetic variability among accessions and their genetic associations. The genetic parameter results revealed that the number of alleles per locus (Na) ranged from 1 to 6 with a mean Na value of 3.89 and the mean effective number of alleles (Ne) per locus 1.882 with a range of 1.22 to 2. Similarly, the polymorphic information content (PIC) values ranged from 0.464 to 0.104. The observed heterozygosity (Ho) (0.547) was found to have higher than expected heterozygosity (He) (0.453) with average heterozygosity of 0.4483. The dendrogram clustered genotypes into three main clades based on their pedigree. The population structure revealed IV sub-populations with all admixtures except the III sub-population, which was mainly formed of exotic cultivars. The average expected heterozygosity (He) and population differentiation within four sub-populations was 1.78 and 0.04, respectively, and explained 95.0% of the total genetic variance in the population. The results revealed that the SSR marker studies could easily decrypt the genetic variability present within the germplasm, which may form the base for the establishment of good gene banks by reducing redundancy of germplasm, selection of parents for any breeding program.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137528 ◽  
Author(s):  
Jian-Wei Zong ◽  
Tian-Tian Zhao ◽  
Qing-Hua Ma ◽  
Li-Song Liang ◽  
Gui-Xi Wang

Genome ◽  
2013 ◽  
Vol 56 (6) ◽  
pp. 345-350 ◽  
Author(s):  
Tae-Hwan Jun ◽  
Andrew P. Michel ◽  
Jacob A. Wenger ◽  
Sung-Taeg Kang ◽  
M.A. Rouf Mian

Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of the USA. A few studies have been conducted on the population genetic structure and genetic diversity of the soybean aphid and the source of its invasion in North America. Molecular markers, such as simple sequence repeats (SSRs) are very useful in the evaluation of population structure and genetic diversity. We used 18 SSR markers to assess the genetic diversity of soybean aphid collections from the USA, South Korea, and Japan. The aphids were collected from two sites in the USA (Indiana and South Dakota), two sites in South Korea (Yeonggwang district and Cheonan city), and one site in Japan (Utsunomiya). The SSR markers were highly effective in differentiating among aphid collections from different countries. The level of differentiation within each population and among populations from the same country was limited, even in the case of the USA where the two collection sites were more than 1200 km apart.


2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Swathi Balakrishnan ◽  
Suma Arun Dev ◽  
Ambothi Rathnasamy Sakthi ◽  
Balasubramanian Vikashini ◽  
Reshma Bhasker T ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document