scholarly journals Artificial Intelligence Techniques for Conflict Resolution

Author(s):  
Reyhan Aydoğan ◽  
Tim Baarslag ◽  
Enrico Gerding

AbstractConflict resolution is essential to obtain cooperation in many scenarios such as politics and business, as well as our day to day life. The importance of conflict resolution has driven research in many fields like anthropology, social science, psychology, mathematics, biology and, more recently, in artificial intelligence. Computer science and artificial intelligence have, in turn, been inspired by theories and techniques from these disciplines, which has led to a variety of computational models and approaches, such as automated negotiation, group decision making, argumentation, preference aggregation, and human-machine interaction. To bring together the different research strands and disciplines in conflict resolution, the Workshop on Conflict Resolution in Decision Making (COREDEMA) was organized. This special issue benefited from the workshop series, and consists of significantly extended and revised selected papers from the ECAI 2016 COREDEMA workshop, as well as completely new contributions.

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Magbool Alelyani ◽  
Sultan Alamri ◽  
Mohammed S. Alqahtani ◽  
Alamin Musa ◽  
Hajar Almater ◽  
...  

Artificial intelligence (AI) is a broad, umbrella term that encompasses the theory and development of computer systems able to perform tasks normally requiring human intelligence. The aim of this study is to assess the radiology community’s attitude in Saudi Arabia toward the applications of AI. Methods: Data for this study were collected using electronic questionnaires in 2019 and 2020. The study included a total of 714 participants. Data analysis was performed using SPSS Statistics (version 25). Results: The majority of the participants (61.2%) had read or heard about the role of AI in radiology. We also found that radiologists had statistically different responses and tended to read more about AI compared to all other specialists. In addition, 82% of the participants thought that AI must be included in the curriculum of medical and allied health colleges, and 86% of the participants agreed that AI would be essential in the future. Even though human–machine interaction was considered to be one of the most important skills in the future, 89% of the participants thought that it would never replace radiologists. Conclusion: Because AI plays a vital role in radiology, it is important to ensure that radiologists and radiographers have at least a minimum understanding of the technology. Our finding shows an acceptable level of knowledge regarding AI technology and that AI applications should be included in the curriculum of the medical and health sciences colleges.


2020 ◽  
Author(s):  
Beata Grzyb ◽  
Gabriella Vigliocco

Language has predominately been studied as a unimodal phenomenon - as speech or text without much consideration of its physical and social context – this is true both in cognitive psychology/psycholinguistics as well as in artificial intelligence. However, in everyday life, language is most often used in face-to-face communication and in addition to structured speech it comprises a dynamic system of multiplex components such as gestures, eye gaze, mouth movements and prosodic modulation. Recently, cognitive scientists have started to realise the potential importance of multimodality for the understanding of human communication and its neural underpinnings; while AI scientists have begun to address how to integrate multimodality in order to improve communication between human and artificial embodied agent. We review here the existing literature on multimodal language learning and processing in humans and the literature on perception of artificial agents, their comprehension and production of multimodal cues and we discuss their main limitations. We conclude by arguing that by joining forces AI scientists can improve the effectiveness of human-machine interaction and increase the human-likeness and acceptance of embodied agents in society. In turn, computational models that generate language in artificial embodied agents constitute a unique research tool to investigate the underlying mechanisms that govern language processing and learning in humans.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hua Fan ◽  
Bing Han ◽  
Wei Gao ◽  
Wenqian Li

PurposeThis study serves two purposes: (1) to evaluate the effects of organizational ambidexterity by examining how the balanced and the combined sales–service configurations of chatbots differ in their abilities to enhance customer experience and patronage and (2) to apply information boundary theory to assess the contingent role that chatbot sales–service ambidexterity can play in adapting to customers' personalization–privacy paradox.Design/methodology/approachAn online survey of artificial intelligence chatbots users was conducted, and a mixed-methods research design involving response surface analysis and polynomial regression was adopted to address the research aim.FindingsThe results of polynomial regressions on survey data from 507 online customers indicated that as the benefits of personalization decreased and the risk to privacy increased, the inherently negative (positive) effects of imbalanced (combined) chatbots' sales–service ambidexterity had an increasing (decreasing) influence on customer experience. Furthermore, customer experience fully mediated the association of chatbots' sales–service ambidexterity with customer patronage.Originality/valueFirst, this study enriches the literature on frontline ambidexterity and extends it to the setting of human–machine interaction. Second, the study contributes to the literature on the personalization–privacy paradox by demonstrating the importance of frontline ambidexterity for adapting to customer concerns. Third, the study examines the conduit between artificial intelligence (AI) chatbots' ambidexterity and sales performance, thereby helping to reconcile the previously inconsistent evidence regarding this relationship.


Author(s):  
J.F. Pagel

Humans utilize sensory and motor systems developed genetically, physically and socially for interfacing with our external environment. We use these same systems to interface in our interactions with artificial intelligence. There are other functioning central nervous system (CNS) systems, however, involved in cognitive processing for which the function and environmental interface is less clear. The synchronous physiologic electrical field system utilizes broadcast extracellular electrical fields for a wide variety of CNS functions. The operations of this system are usually non-conscious and most apparent during sleep (especially the conscious states of sleep that include dreaming), and un-focused waking. The electrical fields of this system are altered and affected by both internal and external stimuli. These fields can be monitored and analyzed by artificial intelligence (AI) systems, and independently of human input, AI systems can utilize similar frequency based electrical potentials to convey data, communicate, supply power, and to store memory. From both human and AI perspectives, these systems have the potential to function more fully in human/machine interaction. This chapter reviews our current knowledge as to function, current interactive approaches, and interface potential for these physiological electrical fields.


Author(s):  
Carlos Ramos

The trend in the direction of hardware cost reduction and miniaturization allows including computing devices in several objects and environments (embedded systems). Ambient Intelligence (AmI) deals with a new world where computing devices are spread everywhere (ubiquity), allowing the human being to interact in physical world environments in an intelligent and unobtrusive way. These environments should be aware of the needs of people, customizing requirements and forecasting behaviours. AmI environments may be so diverse, such as homes, offices, meeting rooms, schools, hospitals, control centers, transports, touristic attractions, stores, sport installations, and music devices. Ambient Intelligence involves many different disciplines, like automation (sensors, control, and actuators), human-machine interaction and computer graphics, communication, ubiquitous computing, embedded systems, and, obviously, Artificial Intelligence. In the aims of Artificial Intelligence, research envisages to include more intelligence in the AmI environments, allowing a better support to the human being and the access to the essential knowledge to make better decisions when interacting with these environments


2014 ◽  
Vol 26 (6) ◽  
pp. 691-691
Author(s):  
Noriyuki Kawarazaki ◽  
Tadashi Yoshidome ◽  
Nobuto Matsuhira ◽  
Takayuki Tanaka

According to the aged society in Japan, the expectation is high for the development of the human support robot or devices in daily life and in medical treatment and welfare. The human centered design and the universal design are very important concept for creating the useful human support devices. Human centric and universal designs are the designs of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design. This special issue provides current researches and developments of human centric, universal and interactive design for robotics and mechatronics. Also, this special issue covers a broad range of research topics, such as human centric design, universal and interactive design, human machine interaction, transport system, housing environment system, rehabilitation devices, multi modal interface, evaluation of the usability, sensor/actuator technologies for assistive system, robotics and mechatronics to support elderly persons. We thank the authors for their fine contributions and the reviewers for their generous time and effort. In closing, we thank the Editorial Board of the Journal of Robotics and Mechatronics for helping make this issue possible.


1984 ◽  
Vol 9 (1) ◽  
pp. 7-18 ◽  
Author(s):  
A. Vickery

In this paper, the author discusses the ways of improving the performance of online retrieval systems by introducing an automated interface between the enquirer and the system. In the first part of the paper, the main features of such human/machine interaction and the characteristics that the user would like to see incorporated in an interface, are de scribed. Then, studies in artificial intelligence that are particu larly relevant to the problems of implementing an intelligent interface, are discussed. The author concludes with a summary of automated mechanisms that will be needed to improve the quality of interaction between the user and the search system.


Sign in / Sign up

Export Citation Format

Share Document