Use of circulating fluidized bed technology at thermal power plants with co-firing of biomass and fossil fuels

2013 ◽  
Vol 46 (6) ◽  
pp. 491-495 ◽  
Author(s):  
G. A. Ryabov ◽  
I. A. Dolgushin
Author(s):  
Ainur A. Kuandykova ◽  
Vitaly M. Lebedev

The existing issues during the combustion of Kazakh coal from the Ekibastuz basin in the Omsk energy system are noted. The environmental problems of coal generation in Omsk are outlined. The possibility of transferring the Omsk coal-fired thermal power plants to the combustion of domestic coals is considered. The options for increasing the efficiency of using solid fossil fuel in the production of electric and thermal energy are given. The existing problem of storing ash and slag wastes obtained by burning high-ash Ekibastuz coals is noted. The transfer of the Omsk CHPPs to the combustion of brown coal from the Kansk-Achinsky deposit, provided that highly effective environmentally friendly technologies are used It is noted that the technology of combustion of fuels in a circulating fluidized bed (CFB) has been industrially developed and implemented in power boilers. The results of operation of the first in Russia CFB boiler of unit No. 9 with a capacity of 330 MW at the Novocherkasskaya SDPP are presented


2019 ◽  
Vol 124 ◽  
pp. 01040 ◽  
Author(s):  
D. T. Nguen ◽  
D. N. Pham ◽  
G. R. Mingaleeva ◽  
O. V. Afanaseva ◽  
P. Zunino

The growing demand for energy and fossil fuels creates increased number of difficulties, while renewable energy sources are still rarely used worldwide, particularly in Vietnam. In this article hybrid thermal power plants based on gas turbine plants are discussed, the increased efficiency of which is achieved by air heating after the compressor in solar air heaters. The basic design equations and the results of evaluating the efficiency and fuel consumption are presented for two thermal power plants of 4.6 MW and 11.8 MW. The dependence of the results on the intensity of solar extraction for the climatic conditions of the Ninh Thuan province of the Republic of Vietnam is discussed.


Author(s):  
Parakram Pyakurel ◽  
Filipe Quintal ◽  
James Auger ◽  
Julian Hanna

One method of reducing atmospheric CO2 emissions in the transportation sector is the replacement of conventional fossil fuel-based vehicles with Electric Vehicles (EVs). However, fossil fuels are still the primary source of electricity production in many regions and the utilization of EVs in such regions increases the electricity demand because of battery charging. This results in increased burning of fossil fuels by thermal power plants and therefore can offset savings in CO2 emissions resulting from the adoption of EVs. In this paper, we consider a scenario where all fossil fuel-based conventional vehicles are replaced by EVs and then estimate the net CO2 emission savings resulting from the adoption of EVs in a region where electricity is primarily supplied by thermal plants. Only emissions generated during the operational phase of vehicle use are considered; emissions during the production phase are not considered. The region under consideration is Madeira, Portugal where thermal plants account for 80% of the total electricity produced. Our findings suggest that although EVs have huge potential to save CO2 emissions, a substantial amount of the savings can be offset due to the increased burning of fossil fuels by thermal plants to meet the electrical demand of charging batteries.


2018 ◽  
pp. 47-76
Author(s):  
Panos Konstantin ◽  
Margarete Konstantin

2017 ◽  
Vol 68 (10) ◽  
pp. 2248-2255
Author(s):  
Camelia Capatina ◽  
Daniela Cirtina

The goal of this research study is to compare the air quality of two urban locations from Targu-Jiu County namely Rovinari and Turceni. Measurements of SO2 content with automatic analysers were used as a criterion to asssess the air quality. Rovinari and Turceni areas were chosen for this study due to the fact that there are located two thermal power plants considered high stationary sources with an important contribution to regional and global pollution by sulfur dioxide, nitrogen oxides and dust. Sustainable development of fossil fuel power plants cannot be done without the use of technology to limit or eliminate environmental pollution. Studies regarding determination of SO2 content in the monitored areas were performed from January to December 2014. By interpreting the results obtained it can be concluded that the concentrations of sulfur dioxide in the ambient air are below the limit value set in legislation. This is mainly due to the developing of the programs for the progressive reduction of annual emissions of sulfur dioxide, nitrogen oxides and dust which was set up by operators of thermal power plants in order to comply with emission limit values. The high level of SO2 concentration in cold season is attributed to intensifying the burning of fossil fuels for household activities.


2019 ◽  
Vol 12 (2) ◽  
pp. 97-105
Author(s):  
V. Z. Leikin ◽  
V. Ye. Mikhailov ◽  
L. A. Chomenok ◽  
P. M. Luzin

To solve the problem of further improving the efficiency and reliability of solid fuel generation in the Russian Federation, it is necessary to solve a number of main problems: ensuring environmental safety, export-oriented nature of the coal industry, low reliability, efficiency, high emissions of NOx , SO2 and particulate matter of existing obsolete equipment. In modern conditions, these problems can be solved comprehensively with the use of relatively low-cost methods in the case of using highly reactive coals, which at the same time have an increased explosion hazard (coals of explosiveness groups 3 and 4). For this reason, currently a large number of coal-fired power plants (mainly in Siberia and the Urals) experience a global transition to the combustion of highly explosive Kuznetsk coal of grades D, G, GD. In the present work, analysis is undertaken of methods and technologies to ensure the explosion and fire safety of fuel preparation systems for combustion at thermal power plants during the transition to these types of fuels, since most of these thermal power plants were initially designed for explosion-proof types of coal (T, 1CC, AH). A number of additional recommendations are developed to the current "rules of explosion safety", taking into account the specifics of technological schemes and the operation of a large number of these thermal power plants, a number of design solutions for equipment that improve the explosion safety of their dust treatment plants. For systems of preparation of finely crushed fuel (5–15 mm), boilers with circulating fluidized bed that are promising for the Russian power industry, and the use of drying installations at thermal power plants to ensure crushing of ordinary high-humidity fuels entering thermal power plants, a number of measures have been proposed that increase the fire safety of such installations.


Sign in / Sign up

Export Citation Format

Share Document