Analysis of Carbon Saving by the Adoption of Electric Vehicles in a Region Where Electricity Generation is Dominated by Thermal Power Plants

Author(s):  
Parakram Pyakurel ◽  
Filipe Quintal ◽  
James Auger ◽  
Julian Hanna

One method of reducing atmospheric CO2 emissions in the transportation sector is the replacement of conventional fossil fuel-based vehicles with Electric Vehicles (EVs). However, fossil fuels are still the primary source of electricity production in many regions and the utilization of EVs in such regions increases the electricity demand because of battery charging. This results in increased burning of fossil fuels by thermal power plants and therefore can offset savings in CO2 emissions resulting from the adoption of EVs. In this paper, we consider a scenario where all fossil fuel-based conventional vehicles are replaced by EVs and then estimate the net CO2 emission savings resulting from the adoption of EVs in a region where electricity is primarily supplied by thermal plants. Only emissions generated during the operational phase of vehicle use are considered; emissions during the production phase are not considered. The region under consideration is Madeira, Portugal where thermal plants account for 80% of the total electricity produced. Our findings suggest that although EVs have huge potential to save CO2 emissions, a substantial amount of the savings can be offset due to the increased burning of fossil fuels by thermal plants to meet the electrical demand of charging batteries.

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Stefano Giuliano ◽  
Reiner Buck ◽  
Santiago Eguiguren

Selected solar-hybrid power plants for operation in base-load as well as midload were analyzed regarding supply security (dispatchable power due to hybridization with fossil fuel) and low CO2 emissions (due to integration of thermal energy storage). The power plants were modeled with different sizes of solar fields and different storage capacities and analyzed on an annual basis. The results were compared to each other and to a conventional fossil-fired combined cycle in terms of technical, economical, and ecological figures. The results of this study show that in comparison to a conventional fossil-fired combined cycle, the potential to reduce the CO2 emissions is high for solar-thermal power plants operated in base-load, especially with large solar fields and high storage capacities. However, for dispatchable power generation and supply security it is obvious that in any case a certain amount of additional fossil fuel is required. No analyzed solar-hybrid power plant shows at the same time advantages in terms of low CO2 emissions and low levelized electricity cost (LEC). While power plants with solar-hybrid combined cycle (SHCC®, Particle-Tower) show interesting LEC, the power plants with steam turbine (Salt-Tower, Parabolic Trough, CO2-Tower) have low CO2 emissions.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2879-2889
Author(s):  
Djordje Petrovic ◽  
Dalibor Pesic ◽  
Maja Petrovic ◽  
Radomir Mijailovic

Reducing CO2 emission is one of the major environmental challenges for transportation. One way to solve this problem is to replace old cars that use fossil fuels (petrol, diesel) with new electric cars. In this paper, the existing model for calculating well-to-wheels CO2 emission during the life cycle of the car (fossil fuel car and electric car) is upgraded. The developed model is used for comparing optimal lifetime and optimal car?s kilometers driven during a lifetime in the replacement process of a fossil fuel car with a new electric car. We find that reducing CO2 emission depends on the type of fossil fuel, and the weight of fossil fuel cars and electric cars. Changing petrol fossil fuel cars with lower weight electric cars have the greatest potential for reducing CO2 emission. However, the introduction of electric cars does not achieve a significant reduction of CO2 emission in countries where electricity is primarily produced in thermal power plants, i. e. in countries with a high emission factor of electricity production.


2019 ◽  
Vol 124 ◽  
pp. 01040 ◽  
Author(s):  
D. T. Nguen ◽  
D. N. Pham ◽  
G. R. Mingaleeva ◽  
O. V. Afanaseva ◽  
P. Zunino

The growing demand for energy and fossil fuels creates increased number of difficulties, while renewable energy sources are still rarely used worldwide, particularly in Vietnam. In this article hybrid thermal power plants based on gas turbine plants are discussed, the increased efficiency of which is achieved by air heating after the compressor in solar air heaters. The basic design equations and the results of evaluating the efficiency and fuel consumption are presented for two thermal power plants of 4.6 MW and 11.8 MW. The dependence of the results on the intensity of solar extraction for the climatic conditions of the Ninh Thuan province of the Republic of Vietnam is discussed.


The paper is devoted to analysis of functional peculiarities of thermal power plants in Ukraine. In the course of the study, key determinants of the sustainable development of domestic electricity generation were identified in the context of transition to a new market model. The preconditions of activation and support of the sustainable development concept implementation process in the modern business practice of the energy sector enterprises within the Ukrainian economy are outlined. The theoretical and practical bases for ensuring the sustainable development of energy in relation to other United Nations Declarations of Sustainable Development are indicated. The comparative estimation of the efficiency level of state policy in scope of energy independence and resource conservation with the use of a complex indicator of GDP energy intensity is given. On the basis of international and domestic statistical data the dynamics of volumes of electricity production in Ukraine for the period of 1990-2017 as well as the structure of electricity generation by type of generation were analyzed. The dynamics of electric power generation in Ukraine by types of raw materials was presented in complex with the dynamics of coal consumption and production for the corresponding period. The peculiarities of thermal power plants functioning in comparison with other power generating enterprises in modern conditions are specified. The key element of Ukraine’s energy independence – the volume of proven coal reserves – is a prerequisite for the efficient functioning of domestic thermal power plants. The pricing features in the sphere of electricity production and sales are outlined, in particular, the structure of market rate and the price of electricity sales by producers to the Wholesale Market are presented. The significance of the innovation factor in the process of improving the efficiency of thermal power plants functioning has been substantiated, taking into account the economic, social and environmental aspects of their production and economic activity.


2017 ◽  
Vol 2 (2) ◽  
pp. 133
Author(s):  
V.Y. Putilov ◽  
I.V. Putilova ◽  
H-J Feuerborn

<p class="TTPTitle"><span>The paper presents the data on a structure of conventional fuels consumption, as well as a structure of fossil fuel consumption at thermal power plants (TPPs) in Russia. The issue of applying the Best Available Technologies (BAT) in Russia is touched upon. Statistics on production and utilization of coal ash in Russia and other countries is given. The paper provides information on the status and terminology of coal ash in different countries. It contains an impact of terminology on the effectiveness of solving the coal ash handling problem in Russia. The paper includes a new legislative definition of coal ash produced at thermal power plants and boiler houses of Russia which meets modern conditions and global trends, as well as requirements for coal energy sector.</span></p>


The Paris Agreement on combating global climate change expresses the consensus of almost all countries in the world on the awareness of the unpredictable dangers of global climate change. We all have to work together to execute the necessary solutions to fight global climate change. Human-induced CO2 is a fundamental part of the global greenhouse effect, so must be handling sources of CO2 emissions into the earth’s atmosphere. From electricity production processes using fossil fuels releases huge amounts of carbon dioxide into the environment, which is the main reason for global climate change. In the meantime, until now, people have not had effective solutions to thoroughly treat industrial emissions. Therefore, we must quickly eliminate all thermal power plants with fossil fuels, and must quickly deploy renewable energy production processes.


Sign in / Sign up

Export Citation Format

Share Document