Identification of total phosphate, submerged vegetation cover and zooplankton size thresholds for success of biomanipulation in peri-urban eutrophic ponds

Hydrobiologia ◽  
2013 ◽  
Vol 737 (1) ◽  
pp. 281-296 ◽  
Author(s):  
Sylvia De Backer ◽  
Samuel Teissier ◽  
Ludwig Triest
Hydrobiologia ◽  
2010 ◽  
Vol 656 (1) ◽  
pp. 255-267 ◽  
Author(s):  
Sylvia De Backer ◽  
Stijn Van Onsem ◽  
Ludwig Triest

2012 ◽  
Author(s):  
Thomas J. Brandeis ◽  
Elvia J. Meléndez-Ackerman ◽  
Eileen H. Helmer

Author(s):  
M. I. Dzhalalova ◽  
A. B. Biarslanov ◽  
D. B. Asgerova

The state of plant communities in areas located in the Tersko-Sulak lowland was studied by assessing phytocenotic indicators: the structure of vegetation cover, projective cover, species diversity, species abundance and elevated production, as well as automated decoding methods. There are almost no virgin soils and natural phytocenoses here; all of them have been transformed into agrocenoses (irrigated arable lands and hayfields, rice-trees and pastures). The long-term impact on pasture ecosystems of natural and anthropogenic factors leads to significant changes in the indigenous communities of this region. Phytocenoses are formed mainly by dry-steppe types of cereals with the participation of feather grass, forbs and ephemera, a semi-desert haloxerophytic shrub - Taurida wormwood. At the base of the grass stand is common coastal wormwood and Taurida wormwood - species resistant to anthropogenic influences. Anthropogenic impacts have led to a decrease in the number of species of feed-rich grain crops and a decrease in the overall productivity of pastures. Plant communities in all areas are littered with ruderal species. The seasonal dynamics of the land cover of the sites was estimated by the methods of automatic decoding of satellite images of the Landsat8 OLI series satellite for 2015, dated by the periods: spring - May 20, summer - July 23, autumn - October 20. Satellite imagery data obtained by Landsat satellite with a resolution in the multispectral image of 30 m per pixel, and in the panchromatic image - 10 m per pixel, which correspond to the requirements for satellite imagery to assess the dynamics of soil and vegetation cover. Lower resolution data, for example, NDVI MODIS, does not provide a reliable reflection of the state of soil and vegetation cover under arid conditions. In this regard, remote sensing data obtained from the Internet resource https://earthexplorer.usgs.gov/ was used.


Sign in / Sign up

Export Citation Format

Share Document