Parasite abundance decreases with host density: evidence of the encounter-dilution effect for a parasite with a complex life cycle

Hydrobiologia ◽  
2016 ◽  
Vol 784 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Julia C. Buck ◽  
William I. Lutterschmidt
Parasitology ◽  
2014 ◽  
Vol 142 (1) ◽  
pp. 134-144 ◽  
Author(s):  
CHELSEA L. WOOD ◽  
KEVIN D. LAFFERTY

SUMMARYTo understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.


Author(s):  
Robert Creed ◽  
Gretchen L. Bailey ◽  
James Skelton ◽  
Bryan L. Brown

The dilution effect was originally proposed to describe the negative effect of increased host diversity on parasite abundance; with greater host diversity, parasite levels per host are predicted to be lower due to a higher probability of dispersing parasites encountering non-competent hosts. Dilution effects could also occur in many mutualisms if dispersing symbionts encounter hosts that vary in their competency. The introduction of non-native hosts can change community competency of a local group of host species. Crayfish introductions are occurring world-wide and these introductions are likely disrupting native crayfish-symbiont systems. Branchiobdellidan symbionts declined on native Cambarus crayfish occurring in the presence and absence of non-native Faxonius crayfish in the New River, USA. We performed an experiment investigating the effect of host density (1 vs 2 native hosts) and host diversity (1 native host and 1 introduced host) on branchiobdellidan abundance. The introduced F. cristavarius is a non-competent host for these worms. Six C. ingens were stocked on a C. chasmodactylus in each treatment and worm numbers were followed over 34 days. Worm numbers decreased over time on C. chasmodactylus alone and in the treatment in which a C. chasmodactylus was paired with an F. cristavarius. Worm numbers remained highest in the 2 C. chasmodactylus treatment . There was no significant effect of host diversity on worm reproduction. Crayfish invasions may have negative effects on mutualistic symbionts depending on the competence of introduced hosts. Loss of native symbionts is one of the potential hidden, negative effects of invasions on native freshwater diversity.


Parasitology ◽  
2016 ◽  
Vol 143 (12) ◽  
pp. 1605-1614 ◽  
Author(s):  
RODERICK B. GAGNE ◽  
DAVID C. HEINS ◽  
PETER B. MCINTYRE ◽  
JAMES F. GILLIAM ◽  
MICHAEL J. BLUM

SUMMARYThe presence of introduced hosts can increase or decrease infections of co-introduced parasites in native species of conservation concern. In this study, we compared parasite abundance, intensity, and prevalence between nativeAwaous stamineusand introduced poeciliid fishes by a co-introduced nematode parasite (Camallanus cotti) in 42 watersheds across the Hawaiian Islands. We found that parasite abundance, intensity and prevalence were greater in native than introduced hosts. Parasite abundance, intensity and prevalence withinA. stamineusvaried between years, which largely reflected a transient spike in infection in three remote watersheds on Molokai. At each site we measured host factors (length, density of native host, density of introduced host) and environmental factors (per cent agricultural and urban land use, water chemistry, watershed area and precipitation) hypothesized to influenceC. cottiabundance, intensity and prevalence. Factors associated with parasitism differed between native and introduced hosts. Notably, parasitism of native hosts was higher in streams with lower water quality, whereas parasitism of introduced hosts was lower in streams with lower water quality. We also found that parasite burdens were lower in both native and introduced hosts when coincident. Evidence of a mutual dilution effect indicates that introduced hosts can ameliorate parasitism of native fishes by co-introduced parasites, which raises questions about the value of remediation actions, such as the removal of introduced hosts, in stemming the rise of infectious disease in species of conservation concern.


2015 ◽  
Vol 112 (28) ◽  
pp. 8667-8671 ◽  
Author(s):  
David J. Civitello ◽  
Jeremy Cohen ◽  
Hiba Fatima ◽  
Neal T. Halstead ◽  
Josue Liriano ◽  
...  

Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant–herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.


Author(s):  
L. Magalhães ◽  
R. Freitas ◽  
A. Dairain ◽  
X. De Montaudouin

Bivalve populations display fluctuating densities resulting in different interactions among them and with their environment. Using the edible cockle (Cerastoderma edule) as a model, we investigated two alternative hypotheses concerning the effect of density on individual infection intensity by trematode parasites. Considering that these parasites infect cockles through filtration activity, our first hypothesis was that high host density will have a dilution effect so that infection intensity decreases with host density. Conversely, high cockle density could attract other hosts used by these trematode parasites to complete their life cycle. A 17-year monthly survey of a cockle population in Arcachon Bay, France, showed a negative correlation between the cockle density and the abundance of parasite larvae in juvenile cockles with a significant threshold when adult cockle density reached 400 ind. m−2. This result was confirmed for the four dominating trematode parasites, independently considered. Additionally, a field experiment was performed during 9 months, with cockles maintained in enclosures with two densities (200 and 800 ind. m−2). Individual cockle mean infection was 1.5 times higher at low cockle density, mainly due to one dominant trematode species (Parvatrema minutum). In conclusion and confirming the first advanced hypothesis, for certain environments, negative consequences of bivalve intraspecific competition at high density can be mitigated by lower parasite pressure.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


1968 ◽  
Vol 42 (3-4) ◽  
pp. 295-298 ◽  
Author(s):  
J. M. Hamilton ◽  
A. W. McCaw

Aelurostrongylus abstrusus, the lungworm of the cat, has a world wide distribution and has been reported from countries as far apart as America, Great Britain and Palestine. It has a complex life cycle insofar as a molluscan intermediate host is essential and it is possible that auxiliary hosts also play an important part. In Britain, the incidence of active infestation of cats with the parasite has been recorded as 19·4% (Lewis, 1927) and 6·6% (Hamilton, 1966) but the latter author found that, generally, the clinical disease produced by the parasite was of a mild nature. It is known that the average patent period of the infestation in the cat is 8–13 weeks and it seems likely that, in that time, a considerable number of first stage larvae would be evacuated. Information on that point is not available and the object of the following experiment was to ascertain the number of larvae produced by cats during the course of a typical infestation.


Parasitology ◽  
2016 ◽  
Vol 143 (14) ◽  
pp. 1824-1846 ◽  
Author(s):  
DANIEL P. BENESH

SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.


2018 ◽  
Vol 3 ◽  
pp. 70 ◽  
Author(s):  
Nicolas M.B. Brancucci ◽  
Mariana De Niz ◽  
Timothy J. Straub ◽  
Deepali Ravel ◽  
Lauriane Sollelis ◽  
...  

Background: Malaria parasites go through major transitions during their complex life cycle, yet the underlying differentiation pathways remain obscure. Here we apply single cell transcriptomics to unravel the program inducing sexual differentiation in Plasmodium falciparum. Parasites have to make this essential life-cycle decision in preparation for human-to-mosquito transmission. Methods: By combining transcriptional profiling with quantitative imaging and genetics, we defined a transcriptional signature in sexually committed cells. Results: We found this transcriptional signature to be distinct from general changes in parasite metabolism that can be observed in response to commitment-inducing conditions. Conclusions: This proof-of-concept study provides a template to capture transcriptional diversity in parasite populations containing complex mixtures of different life-cycle stages and developmental programs, with important implications for our understanding of parasite biology and the ongoing malaria elimination campaign.


Sign in / Sign up

Export Citation Format

Share Document