scholarly journals Correction to: Metabarcoding meiofauna biodiversity assessment in four beaches of Northern Colombia: effects of sampling protocols and primer choice

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Lyda R. Castro ◽  
Rachel S. Meyer ◽  
Beth Shapiro ◽  
Sabrina Shirazi ◽  
Samuel Cutler ◽  
...  
Author(s):  
Zacchaeus G. Compson ◽  
Beverly McClenaghan ◽  
Gregory A. C. Singer ◽  
Nicole A. Fahner ◽  
Mehrdad Hajibabaei

Global biodiversity loss is unprecedented, and threats to existing biodiversity are growing. Given pervasive global change, a major challenge facing resource managers is a lack of scalable tools to rapidly and consistently measure Earth's biodiversity. Environmental genomic tools provide some hope in the face of this crisis, and DNA metabarcoding, in particular, is a powerful approach for biodiversity assessment at large spatial scales. However, metabarcoding studies are variable in their taxonomic, temporal, or spatial scope, investigating individual species, specific taxonomic groups, or targeted communities at local or regional scales. With the advent of modern, ultra-high throughput sequencing platforms, conducting deep sequencing metabarcoding surveys with multiple DNA markers will enhance the breadth of biodiversity coverage, enabling comprehensive, rapid bioassessment of all the organisms in a sample. Here, we report on a systematic literature review of 1,563 articles published about DNA metabarcoding and summarize how this approach is rapidly revolutionizing global bioassessment efforts. Specifically, we quantify the stakeholders using DNA metabarcoding, the dominant applications of this technology, and the taxonomic groups assessed in these studies. We show that while DNA metabarcoding has reached global coverage, few studies deliver on its promise of near-comprehensive biodiversity assessment. We then outline how DNA metabarcoding can help us move toward real-time, global bioassessment, illustrating how different stakeholders could benefit from DNA metabarcoding. Next, we address barriers to widespread adoption of DNA metabarcoding, highlighting the need for standardized sampling protocols, experts and computational resources to handle the deluge of genomic data, and standardized, open-source bioinformatic pipelines. Finally, we explore how technological and scientific advances will realize the promise of total biodiversity assessment in a sample—from microbes to mammals—and unlock the rich information genomics exposes, opening new possibilities for merging whole-system DNA metabarcoding with (1) abundance and biomass quantification, (2) advanced modeling, such as species occupancy models, to improve species detection, (3) population genetics, (4) phylogenetics, and (5) food web and functional gene analysis. While many challenges need to be addressed to facilitate widespread adoption of environmental genomic approaches, concurrent scientific and technological advances will usher in methods to supplement existing bioassessment tools reliant on morphological and abiotic data. This expanded toolbox will help ensure that the best tool is used for the job and enable exciting integrative techniques that capitalize on multiple tools. Collectively, these new approaches will aid in addressing the global biodiversity crisis we now face.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Lyda R. Castro ◽  
Rachel S. Meyer ◽  
Beth Shapiro ◽  
Sabrina Shirazi ◽  
Samuel Cutler ◽  
...  

Diabetes ◽  
1993 ◽  
Vol 42 (11) ◽  
pp. 1635-1641 ◽  
Author(s):  
P. A. Coates ◽  
R. L. Ollerton ◽  
S. D. Luzio ◽  
I. S. Ismail ◽  
D. R. Owens

2021 ◽  
Vol 62 ◽  
pp. 101237
Author(s):  
Benjamin Rowe ◽  
Philip Eichinski ◽  
Jinglan Zhang ◽  
Paul Roe

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Lauren A. Newman ◽  
Alia Fahmy ◽  
Michael J. Sorich ◽  
Oliver G. Best ◽  
Andrew Rowland ◽  
...  

Small extracellular vesicles (sEV) have emerged as a potential rich source of biomarkers in human blood and present the intriguing potential for a ‘liquid biopsy’ to track disease and the effectiveness of interventions. Recently, we have further demonstrated the potential for EV derived biomarkers to account for variability in drug exposure. This study sought to evaluate the variability in abundance and cargo of global and liver-specific circulating sEV, within (diurnal) and between individuals in a cohort of healthy subjects (n = 10). We present normal ranges for EV concentration and size and expression of generic EV protein markers and the liver-specific asialoglycoprotein receptor 1 (ASGR1) in samples collected in the morning and afternoon. EV abundance and cargo was generally not affected by fasting, except CD9 which exhibited a statistically significant increase (p = 0.018). Diurnal variability was observed in the expression of CD81 and ASGR1, which significantly decreased (p = 0.011) and increased (p = 0.009), respectively. These results have potential implications for study sampling protocols and normalisation of biomarker data when considering the expression of sEV derived cargo as a biomarker strategy. Specifically, the novel finding that liver-specific EVs exhibit diurnal variability in healthy subjects should have broad implications in the study of drug metabolism and development of minimally invasive biomarkers for liver disease.


2015 ◽  
Vol 93 (5) ◽  
pp. 361-376 ◽  
Author(s):  
D.J. Tollit ◽  
M.A. Wong ◽  
A.W. Trites

We compared eight dietary indices used to describe the diet of Steller sea lions (Eumetopias jubatus (Schreber, 1776)) from 2001 to 2004 in Frederick Sound, southeast Alaska. Remains (n = 9666 items) from 59+ species categories were identified from 1684 fecal samples (scats) from 14 collection periods. The most frequently occurring prey were walleye pollock (Theragra chalcogramma (Pallas, 1814) = Gadus chalcogrammus Pallas, 1814; 95%), Pacific herring (Clupea pallasii Valenciennes in Cuvier and Valenciennes, 1847; 30%), Pacific hake (Merluccius productus (Ayres, 1855); 29%), and arrowtooth flounder (Atheresthes stomias (Jordan and Gilbert, 1880) = Reinhardtius stomias (Jordan and Gilbert, 1880); 21%). These species, along with Pacific salmon (genus Oncorhynchus Suckley, 1861) and skate (genus Raja L., 1758), accounted for 80%–90% of the reconstructed biomass and energy contribution, with pollock contributing 37%–60%. Overall, 80% of fish were 14–42 cm long and mainly pelagic, though 40% of scats contained benthic-associated prey. Steller sea lions switched from adult pollock to strong cohorts of juvenile pollock, and took advantage of spawning concentrations of salmon in autumn and herring in late spring and summer, as well as a climate-driven increase in hake availability. Observed temporal and site differences in diet confirm the need for robust long-term scat sampling protocols. All major indices similarly tracked key temporal changes, despite differences in occurrence and biomass-energy-based diet estimates linked to prey size and energy-density effects and the application of correction factors.


Sign in / Sign up

Export Citation Format

Share Document