scholarly journals Metabarcoding From Microbes to Mammals: Comprehensive Bioassessment on a Global Scale

Author(s):  
Zacchaeus G. Compson ◽  
Beverly McClenaghan ◽  
Gregory A. C. Singer ◽  
Nicole A. Fahner ◽  
Mehrdad Hajibabaei

Global biodiversity loss is unprecedented, and threats to existing biodiversity are growing. Given pervasive global change, a major challenge facing resource managers is a lack of scalable tools to rapidly and consistently measure Earth's biodiversity. Environmental genomic tools provide some hope in the face of this crisis, and DNA metabarcoding, in particular, is a powerful approach for biodiversity assessment at large spatial scales. However, metabarcoding studies are variable in their taxonomic, temporal, or spatial scope, investigating individual species, specific taxonomic groups, or targeted communities at local or regional scales. With the advent of modern, ultra-high throughput sequencing platforms, conducting deep sequencing metabarcoding surveys with multiple DNA markers will enhance the breadth of biodiversity coverage, enabling comprehensive, rapid bioassessment of all the organisms in a sample. Here, we report on a systematic literature review of 1,563 articles published about DNA metabarcoding and summarize how this approach is rapidly revolutionizing global bioassessment efforts. Specifically, we quantify the stakeholders using DNA metabarcoding, the dominant applications of this technology, and the taxonomic groups assessed in these studies. We show that while DNA metabarcoding has reached global coverage, few studies deliver on its promise of near-comprehensive biodiversity assessment. We then outline how DNA metabarcoding can help us move toward real-time, global bioassessment, illustrating how different stakeholders could benefit from DNA metabarcoding. Next, we address barriers to widespread adoption of DNA metabarcoding, highlighting the need for standardized sampling protocols, experts and computational resources to handle the deluge of genomic data, and standardized, open-source bioinformatic pipelines. Finally, we explore how technological and scientific advances will realize the promise of total biodiversity assessment in a sample—from microbes to mammals—and unlock the rich information genomics exposes, opening new possibilities for merging whole-system DNA metabarcoding with (1) abundance and biomass quantification, (2) advanced modeling, such as species occupancy models, to improve species detection, (3) population genetics, (4) phylogenetics, and (5) food web and functional gene analysis. While many challenges need to be addressed to facilitate widespread adoption of environmental genomic approaches, concurrent scientific and technological advances will usher in methods to supplement existing bioassessment tools reliant on morphological and abiotic data. This expanded toolbox will help ensure that the best tool is used for the job and enable exciting integrative techniques that capitalize on multiple tools. Collectively, these new approaches will aid in addressing the global biodiversity crisis we now face.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242143
Author(s):  
Victoria Carley Maitland ◽  
Chloe Victoria Robinson ◽  
Teresita M. Porter ◽  
Mehrdad Hajibabaei

Biomonitoring is an essential tool for assessing ecological conditions and informing management strategies. The application of DNA metabarcoding and high throughput sequencing has improved data quantity and resolution for biomonitoring of taxa such as macroinvertebrates, yet, there remains the need to optimise these methods for other taxonomic groups. Diatoms have a longstanding history in freshwater biomonitoring as bioindicators of water quality status. However, multi-substrate periphyton collection, a common diatom sampling practice, is time-consuming and thus costly in terms of labour. This study examined whether the benthic kick-net technique used for macroinvertebrate biomonitoring could be applied to bulk-sample diatoms for metabarcoding. To test this approach, we collected samples using both conventional multi-substrate microhabitat periphyton collections and bulk-tissue kick-net methodologies in parallel from replicated sites with different habitat status (good/fair). We found there was no significant difference in community assemblages between conventional periphyton collection and kick-net methodologies or site status, but there was significant difference between diatom communities depending on site (P = 0.042). These results show the diatom taxonomic coverage achieved through DNA metabarcoding of kick-net is suitable for ecological biomonitoring applications. The shift to a more robust sampling approach and capturing diatoms as well as macroinvertebrates in a single sampling event has the potential to significantly improve efficiency of biomonitoring programmes that currently only use the kick-net technique to sample macroinvertebrates.


Author(s):  
Victoria Carley Maitland ◽  
Chloe Victoria Robinson ◽  
Teresita M. Porter ◽  
Mehrdad Hajibabaei

AbstractBiomonitoring is an essential tool for assessing ecological conditions and informing management strategies. The application of DNA metabarcoding and high throughput sequencing has improved data quantity and resolution for biomonitoring of taxa such as macroinvertebrates, yet, there remains the need to optimise these methods for other taxonomic groups. Diatoms have a longstanding history in freshwater biomonitoring as bioindicators of water quality status. However, periphyton scraping, a common diatom sampling practice, is time-consuming and thus costly in terms of labour. This study examined whether the benthic kick-net technique used for macroinvertebrate biomonitoring could be applied to bulk-sample diatoms for metabarcoding. To test this approach, we collected samples using both conventional microhabitat periphyton scraping and bulk-tissue kick-net methodologies in parallel from replicated sites with different habitat status (good/fair). We found there was no significant difference in community assemblages between conventional periphyton scraping and kick-net methodologies, but there was significant difference between diatom communities depending on site quality (P = 0.029). These results show the diatom taxonomic coverage achieved through DNA metabarcoding of kick-net is suitable for ecological biomonitoring applications. The shift to a more robust sampling approach and capturing diatoms and macroinvertebrates in a single sampling event has the potential to significantly improve efficiency of biomonitoring programmes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuhiko Hoshino ◽  
Ryohei Nakao ◽  
Hideyuki Doi ◽  
Toshifumi Minamoto

AbstractThe combination of high-throughput sequencing technology and environmental DNA (eDNA) analysis has the potential to be a powerful tool for comprehensive, non-invasive monitoring of species in the environment. To understand the correlation between the abundance of eDNA and that of species in natural environments, we have to obtain quantitative eDNA data, usually via individual assays for each species. The recently developed quantitative sequencing (qSeq) technique enables simultaneous phylogenetic identification and quantification of individual species by counting random tags added to the 5′ end of the target sequence during the first DNA synthesis. Here, we applied qSeq to eDNA analysis to test its effectiveness in biodiversity monitoring. eDNA was extracted from water samples taken over 4 days from aquaria containing five fish species (Hemigrammocypris neglectus, Candidia temminckii, Oryzias latipes, Rhinogobius flumineus, and Misgurnus anguillicaudatus), and quantified by qSeq and microfluidic digital PCR (dPCR) using a TaqMan probe. The eDNA abundance quantified by qSeq was consistent with that quantified by dPCR for each fish species at each sampling time. The correlation coefficients between qSeq and dPCR were 0.643, 0.859, and 0.786 for H. neglectus, O. latipes, and M. anguillicaudatus, respectively, indicating that qSeq accurately quantifies fish eDNA.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


2016 ◽  
Vol 3 (10) ◽  
pp. 160368 ◽  
Author(s):  
Campbell Murn ◽  
Graham J. Holloway

Species occurring at low density can be difficult to detect and if not properly accounted for, imperfect detection will lead to inaccurate estimates of occupancy. Understanding sources of variation in detection probability and how they can be managed is a key part of monitoring. We used sightings data of a low-density and elusive raptor (white-headed vulture Trigonoceps occipitalis ) in areas of known occupancy (breeding territories) in a likelihood-based modelling approach to calculate detection probability and the factors affecting it. Because occupancy was known a priori to be 100%, we fixed the model occupancy parameter to 1.0 and focused on identifying sources of variation in detection probability. Using detection histories from 359 territory visits, we assessed nine covariates in 29 candidate models. The model with the highest support indicated that observer speed during a survey, combined with temporal covariates such as time of year and length of time within a territory, had the highest influence on the detection probability. Averaged detection probability was 0.207 (s.e. 0.033) and based on this the mean number of visits required to determine within 95% confidence that white-headed vultures are absent from a breeding area is 13 (95% CI: 9–20). Topographical and habitat covariates contributed little to the best models and had little effect on detection probability. We highlight that low detection probabilities of some species means that emphasizing habitat covariates could lead to spurious results in occupancy models that do not also incorporate temporal components. While variation in detection probability is complex and influenced by effects at both temporal and spatial scales, temporal covariates can and should be controlled as part of robust survey methods. Our results emphasize the importance of accounting for detection probability in occupancy studies, particularly during presence/absence studies for species such as raptors that are widespread and occur at low densities.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Lyda R. Castro ◽  
Rachel S. Meyer ◽  
Beth Shapiro ◽  
Sabrina Shirazi ◽  
Samuel Cutler ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Camila D. Ritter ◽  
Søren Faurby ◽  
Dominic J. Bennett ◽  
Luciano N. Naka ◽  
Hans ter Steege ◽  
...  

AbstractMost knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kyle D. Kittelberger ◽  
Solomon V. Hendrix ◽  
Çağan Hakkı Şekercioğlu

Due to the increasing popularity of websites specializing in nature documentation, there has been a surge in the number of people enthusiastic about observing and documenting nature over the past 2 decades. These citizen scientists are recording biodiversity on unprecedented temporal and spatial scales, rendering data of tremendous value to the scientific community. In this study, we investigate the role of citizen science in increasing knowledge of global biodiversity through the examination of notable contributions to the understanding of the insect suborder Auchenorrhyncha, also known as true hoppers, in North America. We have compiled a comprehensive summary of citizen science contributions—published and unpublished—to the understanding of hopper diversity, finding over fifty previously unpublished country and state records as well as dozens of undescribed and potentially undescribed species. We compare citizen science contributions to those published in the literature as well as specimen records in collections in the United States and Canada, illuminating the fact that the copious data afforded by citizen science contributions are underutilized. We also introduce the website Hoppers of North Carolina, a revolutionary new benchmark for tracking hopper diversity, disseminating knowledge from the literature, and incorporating citizen science. Finally, we provide a series of recommendations for both the entomological community and citizen science platforms on how best to approach, utilize, and increase the quality of sightings from the general public.


2019 ◽  
Vol 3 ◽  
Author(s):  
Vasselon Valentin ◽  
Rimet Frédéric ◽  
Domaizon Isabelle ◽  
Monnier Olivier ◽  
Reyjol Yorick ◽  
...  

Ecological status assessment of watercourses is based on the calculation of quality indices using pollution sensitivity of targeted biological groups, including diatoms. The determination and quantification of diatom species is generally based on microscopic morphological identification, which requires expertise and is time-consuming and costly. In Europe, this morphological approach is legally imposed by standards and regulatory decrees by the Water Framework Directive (WFD). Over the past decade, a DNA-based molecular biology approach has newly been developed to identify species based on genetic criteria rather than morphological ones (i.e. DNA metabarcoding). In combination with high throughput sequencing technologies, metabarcoding makes it possible both to identify all species present in an environmental sample and to process several hundred samples in parallel. This article presents the results of two recent studies carried out on the WFD networks of rivers of Mayotte (2013–2018) and metropolitan France (2016–2018). These studies aimed at testing the potential application of metabarcoding for biomonitoring in the context of the WFD. We discuss the various methodological developments and optimisations that have been made to make the taxonomic inventories of diatoms produced by metabarcoding more reliable, particularly in terms of species quantification. We present the results of the application of this DNA approach on more than 500 river sites, comparing them with those obtained using the standardised morphological method. Finally, we discuss the potential of metabarcoding for routine application, its limits of application and propose some recommendations for future implementation in WFD.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sara Atienza Casas ◽  
Markus Majaneva ◽  
Thomas Jensen ◽  
Marie Davey ◽  
Frode Fossøy ◽  
...  

Biodiversity assessments using molecular identification of organisms through high-throughput sequencing techniques have been a game changer in ecosystem monitoring, providing increased taxonomic resolution, more objective identifications, potential cost reductions, and reduced processing times. The use of DNA metabarcoding of bulk samples and environmental DNA (eDNA) is now widespread but is not yet universally implemented in national monitoring programs. While bulk sample metabarcoding involves extraction of DNA from organisms in a sample, eDNA analysis involves obtaining DNA directly from environmental samples, which can include microorganisms, meiofauna-size taxa and macrofauna traces such as larval stages, skin and hair cells, gametes, faeces and free DNA bound to particles. In Norway, freshwater biomonitoring in compliance with the EU Water Framework Directive (WFD) is conducted on several administrative levels, including national monitoring programs for running water, small and large lakes. These programs typically focus on a fraction of the actual biodiversity present in the monitored habitats (Weigand 2019). DNA metabarcoding of both bulk samples and eDNA samples are relevant tools for future freshwater biomonitoring in Norway. The aim of this PhD project is to develop assessment protocols based on DNA-metabarcoding and eDNA of benthic invertebrates, microcrustaceans and fish that can be used as standard biomonitoring tools to assess the ecological condition of lakes. The main topics addressed will be: - Development of protocols throughout the eDNA-metabarcoding workflow (i.e. sampling, filtration, preservation, extraction, amplification and sequencing) suitable to execute biodiversity assessments and determine the ecological status of lakes. - Comparison of the results obtained using molecular tools and traditional morphology-based approaches in order to assess the feasibility of such techniques to be incorporated as standard biomonitoring tools, such as the ones implemented under the provisions of the WFD. - Evaluate the effect of improved taxonomic resolution from molecular techniques on determining the ecological status of lakes, both by broadening the number of taxa analyzed and by identifying more taxa to species level. - Assess the feasibility of using eDNA extracted from water samples, taken at different depths and fish densities, to measure fish abundance/biomass as a proxy to calculate the ecological quality indices regulated in the WFD. - Analyze the coverage and resolution provided by reference libraries for certain taxa, such as crustacea, in order to assess the reliability and precision of taxonomic assignments.


Sign in / Sign up

Export Citation Format

Share Document