Structural Relationships among High School Students’ Scientific Knowledge, Critical Thinking, Engineering Design Process, and Design Product

2019 ◽  
Vol 18 (6) ◽  
pp. 1001-1022 ◽  
Author(s):  
Kuang-Chao Yu ◽  
Pai-Hsing Wu ◽  
Szu-Chun Fan
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael S. Rugh ◽  
Donald J. Beyette ◽  
Mary Margaret Capraro ◽  
Robert M. Capraro

Purpose The purpose of this study is to examine a week-long science, technology, engineering and mathematics (STEM) project-based learning (PBL) activity that integrates a new educational technology and the engineering design process to teach middle and high school students the concepts involved in rotational physics. The technology and teaching method described in this paper can be applied to a wide variety of STEM content areas. Design/methodology/approach As an educational technology, the dynamic and interactive mathematical expressions (DIME) map system automatically generates an interactive, connected concept map of mathematically based concepts extracted from a portable document format textbook chapter. Over five days, students used DIME maps to engage in meaningful self-guided learning within the engineering design process and STEM PBL. Findings Using DIME maps within a STEM PBL activity, students explored the physics behind spinning objects, proposed multiple creative designs and built a variety of spinners to meet specified criteria and constraints. Practical implications STEM teachers can use DIME maps and STEM PBL to support their students in making connections between what they learn in the classroom and real-world scenarios. Social implications For any classroom with computers, tablets or phones and an internet connection, DIME maps are an accessible educational technology that provides an alternative representation of knowledge for learners who are underserved by traditional methods of instruction. Originality/value For STEM teachers and education researchers, the activity described in this paper uses advances in technology (DIME maps and slow-motion video capture on cell phones) and pedagogy (STEM PBL and the engineering design process) to enable students to engage in meaningful learning.


2019 ◽  
Vol 81 (8) ◽  
pp. 570-576
Author(s):  
Taylor Holder ◽  
Laura Pottmeyer ◽  
Frackson Mumba

Students often find it challenging to learn about complex and abstract biological processes. Using the engineering design process, which involves designing, building, and testing prototypes, can help students visualize the processes and anchor ideas from lab activities. We describe an engineering-design-integrated biology unit designed for high school students in which they learn about the properties of slime molds, the difference between eukaryotes and prokaryotes, and the iterative nature of the engineering design process. Using the engineering design process, students were successful in quarantining the slime mold from the non-inoculated oats. A t-test revealed statistically significant differences in students' understanding of slime mold characteristics, the difference between eukaryotes and prokaryotes, and the engineering design process before and after the unit. Overall, students demonstrated sound understanding of the biology core ideas and engineering design skills inherent in this unit.


Sign in / Sign up

Export Citation Format

Share Document