Thermal Conductivity Measurements of Liquid Ammonia by the Transient Short-Hot-Wire Method

2020 ◽  
Vol 41 (5) ◽  
Author(s):  
Daisuke Tomida ◽  
Tohru Yoshinaga
2017 ◽  
Vol 21 (3) ◽  
pp. 1195-1202 ◽  
Author(s):  
Andrej Stanimirovic ◽  
Emila Zivkovic ◽  
Nenad Milosevic ◽  
Mirjana Kijevcanin

Transient hot wire method is considered a reliable and precise technique for measuring the thermal conductivity of liquids. The present paper describes a new transient hot wire experimental set-up and its initial testing. The new apparatus was tested by performing thermal conductivity measurements on substances whose reference thermophysical properties data existed in literature, namely on pure toluene and double distilled deionized water. The values of thermal conductivity measured in the temperature range 25 to 45 ?C deviated +2.2% to +3% from the literature data, while the expanded measurement uncertainty was estimated to be ?4%.


1998 ◽  
Vol 34 (3P2) ◽  
pp. 877-881 ◽  
Author(s):  
Mikio Enoeda ◽  
Kazuyuki Furuya ◽  
Hideyuki Takatsu ◽  
Shigeto Kikuchi ◽  
Toshihisa Hatano

Author(s):  
Koichi Kimura ◽  
Shogo Moroe ◽  
Peter Woodfield ◽  
Jun Fukai ◽  
Kan’ei Shinzato ◽  
...  

The thermal conductivities and thermal diffusivities of hydrogen were measured with a transient short hot wire method for temperature range up to 300 °C and pressure range up to 100MPa. The measured thermal conductivities showed good reproducibility and agreed with the existing values within a deviation of ±2%.


Author(s):  
Masamichi Kohno ◽  
Koichi Kimura ◽  
Shogo Moroe ◽  
Yasuyuki Takata ◽  
Peter L. Woodfield ◽  
...  

Thermal conductivity and thermal diffusivity of CNT-nanofluids and Al2O3-nanofulids were measured by the transient short-hot-wire method. The uncertainty of their measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. Three different shapes of Al2O3 particles were prepared for Al2O3–water nanofluids. For the thermal conductivity of Al2O3-water nanofluids, there are differences in the enhancement of thermal conductivity for differences in particle shapes. Hardly any enhancement of thermal conductivity was observed for SWCNT-water nanofluids because the volume fraction of SWCNT was extremely low. However, we consider by increasing the volume fraction of SWCNTs, it will be possible to enhance the thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document