Measurement of Effective Thermal Conductivity of CNT-Nanofluids by Transient Short-Wire Method

Author(s):  
Masamichi Kohno ◽  
Koichi Kimura ◽  
Shogo Moroe ◽  
Yasuyuki Takata ◽  
Peter L. Woodfield ◽  
...  

Thermal conductivity and thermal diffusivity of CNT-nanofluids and Al2O3-nanofulids were measured by the transient short-hot-wire method. The uncertainty of their measurements is estimated to be within 1% for the thermal conductivity and 5% for the thermal diffusivity. Three different shapes of Al2O3 particles were prepared for Al2O3–water nanofluids. For the thermal conductivity of Al2O3-water nanofluids, there are differences in the enhancement of thermal conductivity for differences in particle shapes. Hardly any enhancement of thermal conductivity was observed for SWCNT-water nanofluids because the volume fraction of SWCNT was extremely low. However, we consider by increasing the volume fraction of SWCNTs, it will be possible to enhance the thermal conductivity.

2013 ◽  
Vol 546 ◽  
pp. 112-116
Author(s):  
Yan Jiao Li ◽  
Chang Jiang Liu ◽  
Zhi Qing Guo ◽  
Qiu Juan Lv ◽  
Fang Xie

The thermal conductivity of AlN/EG nanofluids was investigated by transient hot-wire method. Experimental results indicated that the thermal conductivity of AlN/EG nanofluids increase nearly linear with the increase of nanoparticles volume fraction, and the results can’t be predicted by conditional Maxwell model. The effect of temperature on effective thermal conductivity of AlN/EG nanofluids was investigated. Result indicated that the thermal conductivity of AlN/EG nanofluids increased with the increase of temperature.


1998 ◽  
Vol 34 (3P2) ◽  
pp. 877-881 ◽  
Author(s):  
Mikio Enoeda ◽  
Kazuyuki Furuya ◽  
Hideyuki Takatsu ◽  
Shigeto Kikuchi ◽  
Toshihisa Hatano

Author(s):  
Koichi Kimura ◽  
Shogo Moroe ◽  
Peter Woodfield ◽  
Jun Fukai ◽  
Kan’ei Shinzato ◽  
...  

The thermal conductivities and thermal diffusivities of hydrogen were measured with a transient short hot wire method for temperature range up to 300 °C and pressure range up to 100MPa. The measured thermal conductivities showed good reproducibility and agreed with the existing values within a deviation of ±2%.


Sign in / Sign up

Export Citation Format

Share Document