Schmidt Number Entanglement Measure for Multipartite k-nonseparable States

2020 ◽  
Vol 59 (3) ◽  
pp. 983-990
Author(s):  
Yinzhu Wang ◽  
Tianwen Liu ◽  
Ruifen Ma
2016 ◽  
Vol 14 (01) ◽  
pp. 1650001 ◽  
Author(s):  
Yinzhu Wang ◽  
Danxia Wang ◽  
Li Huang

In this paper, an extended negativity entanglement measure for multipartite k-nonseparable states with respect to k-partition was proposed. We show that this measure is well-defined, i.e. it satisfies some basic properties as an entanglement measure. In addition, we give a relation between this measure and k-ME concurrence, and obtain a lower bound of this measure.


2011 ◽  
Vol 83 (4) ◽  
pp. 045002 ◽  
Author(s):  
J Sperling ◽  
W Vogel

2001 ◽  
Vol 63 (4) ◽  
Author(s):  
Alexander Wong ◽  
Nelson Christensen
Keyword(s):  

2009 ◽  
Vol 50 (1) ◽  
pp. 012104 ◽  
Author(s):  
Dafa Li ◽  
Xiangrong Li ◽  
Hongtao Huang ◽  
Xinxin Li
Keyword(s):  

2010 ◽  
Vol 40 (4) ◽  
pp. 685-712 ◽  
Author(s):  
William D. Smyth ◽  
Barry Ruddick

Abstract In this paper the authors investigate the action of ambient turbulence on thermohaline interleaving using both theory and numerical calculations in combination with observations from Meddy Sharon and the Faroe Front. The highly simplified models of ambient turbulence used previously are improved upon by allowing turbulent diffusivities of momentum, heat, and salt to depend on background gradients and to evolve as the instability grows. Previous studies have shown that ambient turbulence, at typical ocean levels, can quench the thermohaline interleaving instability on baroclinic fronts. These findings conflict with the observation that interleaving is common in baroclinic frontal zones despite ambient turbulence. Another challenge to the existing theory comes from numerical experiments showing that the Schmidt number for sheared salt fingers is much smaller than previously assumed. Use of the revised value in an interleaving calculation results in interleaving layers that are both weaker and thinner than those observed. This study aims to resolve those paradoxes. The authors show that, when turbulence has a Prandtl number greater than unity, turbulent momentum fluxes can compensate for the reduced Schmidt number of salt fingering. Thus, ambient turbulence determines the vertical scale of interleaving. In typical oceanic interleaving structures, the observed property gradients are insufficient to predict interleaving growth at an observable level, even when improved turbulence models are used. The deficiency is small, though: gradients sharper by a few tens of percent are sufficient to support instability. The authors suggest that this is due to the efficiency of interleaving in erasing those property gradients. A new class of mechanisms for interleaving, driven by flow-dependent fluctuations in turbulent diffusivities, is identified. The underlying mechanism is similar to the well-known Phillips layering instability; however, because of Coriolis effects, it has a well-defined vertical scale and also a tilt angle opposite to that of finger-driven interleaving.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Dong-Hyeog Yoon ◽  
Kyung-Soo Yang ◽  
Klaus Bremhorst

Characteristics of turbulent mass transfer around a rotating circular cylinder have been investigated by Direct Numerical Simulation. The concentration field was computed for three different cases of Schmidt number, Sc = 1, 10 and 100 at ReR* = 336. Our results confirm that the thickness of the Nernst diffusion layer decreases as Sc increases. Wall-limiting behavior within the diffusion layer was examined and compared with that of channel flow. Concentration fluctuation time scale was found to scale with r+2, while the time scale ratio nearly equals the Schmidt number throughout the diffusion layer. Scalar modeling closure constants based on gradient diffusion models were found to vary considerably within the diffusion layer. Results of an octant analysis show the significant role played by the ejection and sweep events just as is found for flat plate, channel, and pipe flow boundary layers. Turbulence budgets revealed a strong Sc dependence of turbulent scalar transport.


1978 ◽  
Vol 88 (3) ◽  
pp. 541-562 ◽  
Author(s):  
R. J. Hill

Several models are developed for the high-wavenumber portion of the spectral transfer function of scalar quantities advected by high-Reynolds-number, locally isotropic turbulent flow. These models are applicable for arbitrary Prandtl or Schmidt number, v/D, and the resultant scalar spectra are compared with several experiments having different v/D. The ‘bump’ in the temperature spectrum of air observed over land is shown to be due to a tendency toward a viscous-convective range and the presence of this bump is consistent with experiments for large v/D. The wavenumbers defining the transition between the inertial-convective range and viscous-convective range for asymptotically large v/D (denoted k* and k1* for the three- and one-dimensional spectra) are determined by comparison of the models with experiments. A measurement of the transitional wavenumber k1* [denoted (k1*)s] is found to depend on v/D and on any filter cut-off. On the basis of the k* values it is shown that measurements of β1 from temperature spectra in moderate Reynolds number turbulence in air (v/D = 0·72) maybe over-estimates and that the inertial-diffusive range of temperature fluctuations in mercury (v/D ≃ 0·02) is of very limited extent.


Sign in / Sign up

Export Citation Format

Share Document