Electron-Phonon Model in the Faddeev-Jackiw Quantization Formalism

2020 ◽  
Vol 59 (9) ◽  
pp. 2741-2750
Author(s):  
Jiang Jin-huan
2004 ◽  
Vol 19 (10) ◽  
pp. 1609-1638 ◽  
Author(s):  
ADRIAN P. GENTLE ◽  
NATHAN D. GEORGE ◽  
ARKADY KHEYFETS ◽  
WARNER A. MILLER

We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.


1970 ◽  
Vol 52 (8) ◽  
pp. 4041-4045 ◽  
Author(s):  
P. Bucci ◽  
P. Cavaliere ◽  
S. Santucci

2021 ◽  
Vol 66 (12) ◽  
pp. 1013
Author(s):  
S.N. Abood ◽  
A.A. Al-Rawi ◽  
L.A. Najam ◽  
F.M. Al-Jomaily

Mixed-symmetry states of 92Zr and 94Mo isotopes are investigated with the use of the collective models, Interacting Boson Model-2 (IBM-2) and Quasiparticle Phonon Model (QPM). The energy spectra and electromagnetic transition rates for these isotopes are calculated. The results of IBM-2 and QPM are compared with available experimental data. We have obtained a satisfactory agreement, and IBM-2 gives a better description. In these isotopes, we observe a few states having a mixed symmetry such as 2+2, 2+3, 3+1, and 1+s. It is found that these isotopes have a vibrational shape corresponding to the U(5) symmetry.


1989 ◽  
Vol T27 ◽  
pp. 101-106 ◽  
Author(s):  
D J Scalapino ◽  
R L Sugar ◽  
S R White ◽  
N E Bickers ◽  
R T Scalettar

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lotta Jokiniemi ◽  
Jouni Suhonen ◽  
Hiroyasu Ejiri

Neutrino-nuclear responses in the form of squares of nuclear matrix elements, NMEs, are crucial for studies of neutrino-induced processes in nuclei. In this work we investigate magnetic hexadecapole (M4) NMEs in medium-heavy nuclei. The experimentally derived NMEs,MEXP(M4), deduced from observed M4γtransition half-lives are compared with the single-quasiparticle (QP) NMEs,MQP(M4), and the microscopic quasiparticle-phonon model (MQPM) NMEsMMQPM(M4). The experimentally derived M4 NMEs are found to be reduced by a coefficientk≈0.29with respect toMQP(M4) and byk≈0.33with respect toMMQPM(M4). The M4 NMEs are reduced a little by the quasiparticle-phonon correlations of the MQPM wave functions but mainly by other nucleonic and nonnucleonic correlations which are not explicitly included in the MQPM. The found reduction rates are of the same order of magnitude as those for magnetic quadrupoleγtransitions and Gamow-Teller (GT) and spin-dipole (SD)βtransitions. The impacts of the found reduction coefficients on the magnitudes of the NMEs involved in astroneutrino interactions and neutrinoless double beta decays are discussed.


Sign in / Sign up

Export Citation Format

Share Document