scholarly journals Decoupling the NLO-coupled QED⊗QCD, DGLAP evolution equations, using Laplace transform method

2017 ◽  
Vol 32 (14) ◽  
pp. 1750065 ◽  
Author(s):  
Marzieh Mottaghizadeh ◽  
Parvin Eslami ◽  
Fatemeh Taghavi-Shahri

We analytically solved the QED[Formula: see text]QCD-coupled DGLAP evolution equations at leading order (LO) quantum electrodynamics (QED) and next-to-leading order (NLO) quantum chromodynamics (QCD) approximations, using the Laplace transform method and then computed the proton structure function in terms of the unpolarized parton distribution functions. Our analytical solutions for parton densities are in good agreement with those from CT14QED [Formula: see text] (Ref. 6) global parametrizations and APFEL (A PDF Evolution Library) [Formula: see text] (Ref. 4). We also compared the proton structure function, [Formula: see text], with the experimental data released by the ZEUS and H1 collaborations at HERA. There is a nice agreement between them in the range of low and high [Formula: see text] and [Formula: see text].

2012 ◽  
Vol 27 (31) ◽  
pp. 1250179 ◽  
Author(s):  
H. NEMATOLLAHI ◽  
M. M. YAZDANPANAH ◽  
A. MIRJALILI

We compute the longitudinal structure function of the proton (FL) at the next-to-next-to-leading order (NNLO) approximation. For this purpose, we should know the flavor-singlet, non-singlet and gluon distribution functions of the proton. We use the chiral quark model (χQM) to determine these distributions. Finally, we compare the results of FL with the recent ZEUZ and H1 experimental data and some fitting parametrizations. Our results are in good agreement with the data and the related fittings.


2016 ◽  
Vol 31 (17) ◽  
pp. 1650100 ◽  
Author(s):  
F. Taghavi-Shahri ◽  
S. Atashbar Tehrani ◽  
M. Zarei

With an analytical solutions of DGLAP evolution equations based on the Laplace transform method, we find the fragmentation functions (FFs) of neutral mesons, [Formula: see text] and [Formula: see text] at NLO approximation. We also calculated the total fragmentation functions of these mesons and compared them with experimental data and those from global fits. The results show a good agreement between our solutions and other models and they are compatible with experimental data.


2011 ◽  
Vol 26 (03n04) ◽  
pp. 658-659 ◽  
Author(s):  
H. KHANPOUR ◽  
ALI N. KHORRAMIAN ◽  
S. ATASHBAR TEHRANI

In this article we present a determination of the strong coupling constant and parton distribution functions (PDFs) based on a next-to-leading order (NLO) perturbative QCD analysis of proton structure function. More precisely, we extract [Formula: see text] and PDFs by fitting perturbative QCD predictions to the data from the measurements of the proton structure function [Formula: see text] in deep inelastic scattering, which are based on perturbative QCD calculations up to NLO. We obtain at NLO [Formula: see text] in the variable-flavor number scheme.


2014 ◽  
Vol 29 (32) ◽  
pp. 1450189 ◽  
Author(s):  
G. R. Boroun ◽  
B. Rezaei ◽  
J. K. Sarma

In this paper, the evolutions of longitudinal proton structure function have been obtained at small x up to next-to-next-to-leading order using a hard Pomeron behavior. In our paper, evolutions of gluonic as well as heavy longitudinal structure functions have been obtained separately and the total contributions have been calculated. The total longitudinal structure functions have been compared with results of Donnachie–Landshoff (DL) model, Color Dipole (CD) model, kT factorization and H1 data.


Sign in / Sign up

Export Citation Format

Share Document