Experimental investigation of the stability of reinforced cylindrical shells subject to axial compression

2006 ◽  
Vol 42 (5) ◽  
pp. 593-595 ◽  
Author(s):  
V. F. Sivak
1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


1992 ◽  
Vol 28 (3) ◽  
pp. 176-179
Author(s):  
V. M. Muratov ◽  
A. T. Tubaivskii ◽  
N. T. Bobel'

1980 ◽  
Vol 16 (12) ◽  
pp. 1057-1060
Author(s):  
I. S. Malyutin ◽  
P. B. Pilipenko ◽  
V. P. Georgievskii ◽  
V. I. Smykov

1968 ◽  
Vol 90 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Lars A˚ke Samuelson

The results are presented of an experimental investigation of creep buckling of circular cylindrical shells. The test specimens, manufactured from an aluminum alloy similar to 24S, had radius to thickness ratios between 30 and 150 and length to radius ratios greater than 2. They were subjected to axial compression or bending at a temperature of 225 deg C (430 deg F) and at various stress levels. The critical time under a constant load was determined as a function of the stress level, the shell geometry, and the type of loading. It was found that the shells subjected to pure compression had a substantially shorter lifetime than those subjected to pure bending with the same maximum applied stress. The thickest test specimens failed through collapse into a “wrinkling” mode which for the pure compression case is axisymmetric, whereas the thinner cylinders buckled into a typical diamond pattern. In all cases, buckling occurred at one of the edges. The postbuckling configuration was found to depend not only on the geometry of the shell but also on the load level. For very low stress levels, even the thinner cylinders buckled in the short wave pattern (symmetric for compression). A comparison between the present experimental results and theoretical values of the critical time presented in earlier works showed that a fairly good estimate may be obtained for the case of axial compression, whereas the approximate theory for creep buckling under pure bending gives an unduly conservative result.


2010 ◽  
Vol 163-167 ◽  
pp. 49-54 ◽  
Author(s):  
Zhen Wang ◽  
Yang Zhao

Buckling is often the main design consideration for thin cylindrical shells. For most load cases, the stability behavior of the shell is acutely sensitive to circumferential weld-induced imperfections, and the corresponding residual stresses are some beneficial to buckling strength of the shell generally. However, these conclusions are all based on the cylinders with constant wall thickness, and the studies about the effect of residual stresses on buckling strength of tapered cylindrical shells under partial axial compression are few. This paper applies trapezoidal strain field approach to simulate circumferential weld-induced imperfections on tapered cylindrical shellls, and studies the stability behavior of the cylinders with single circumferential weld and multiple circumferential welds under partial axial compression respectively. By comparing the results derived from the models with/without circumferential welds and corresponding residual stresses, the effects of weld depressions and residual stresses on tapered cylindrical shells under partial axial compression are obtained.


Sign in / Sign up

Export Citation Format

Share Document