Stress intensity factor in a contact problem for a plane crack under an antiplane shear wave

2007 ◽  
Vol 43 (9) ◽  
pp. 1043-1047 ◽  
Author(s):  
V. V. Zozulya
1982 ◽  
Vol 49 (4) ◽  
pp. 754-760 ◽  
Author(s):  
P. S. Theocaris ◽  
C. I. Razem

The KIII-stress intensity factor in an edge-cracked plate submitted to antiplane shear may be evaluated by the reflected caustic created around the crack tip, provided that a purely elastic behavior exists at the crack tip [1]. For a work-hardening, elastic-plastic material, when stresses at the vicinity of the crack tip exceed the yield limit of the material, the new shape of caustic differs substantially from the corresponding shape of the elastic solution. In this paper the shape and size of the caustics created at the tip of the crack, when small-scale yielding is established in the vicinity of the crack tip, were studied, based on a closed-form solution introduced by Rice [2]. The plastic stress intensity factor may be evaluated from the dimensions of the plastic caustic. Experimental evidence with cracked plates made of opaque materials, like steel, corroborated the results of the theory.


1985 ◽  
Vol 52 (4) ◽  
pp. 853-856 ◽  
Author(s):  
J. R. Walton

In a previous paper, the dynamic, steady-state propagation of a semi-infinite antiplane shear crack was considered for an infinite, general linearly viscoelastic body. Under the assumptions that the shear modulus is a positive, nonincreasing continuous and convex function of time, convenient, closed-form expressions were derived for the stress intensity factor and for the entire stress distribution ahead of and in the plane of the advancing crack. The solution was shown to have a simple, universal dependence on the shear modulus and crack speed from which qualitative and quantitative information can readily be gleaned. Here, the corresponding problem for a general, linearly viscoelastic layer is solved. An infinite series representation for the stress intensity factor is derived, each term of which can be calculated recursively in closed form. As before, a simple universal dependence on crack speed and material properties is exhibited.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1573-1579
Author(s):  
Heoung Jae Chun ◽  
Sang Hyun Park

The analysis of curved interfacial crack between viscoelastic foam and anisotropic composites was conducted under antiplane shear loading applied at infinity. In the analysis, in order to represent viscoelastic behavior of foam, the Kelvin-Maxwell model was incorporated and Laplace transform was applied to treat the viscoelastic characteristics of foam. The curved interfacial crack problem was reduced to a Hilbert problem and a closed-form asymptotic solution was derived. The stress intensity factors in the vicinity of the interfacial crack tip were predicted by considering both anisotropic characteristics of composites and viscoelastic properties of foam. It was found from the analysis that the stress intensity factor was governed by material properties such as shear modulus and relaxation time, and increased with the increase in the curvature as well as the ratio of stiffness coefficients of composite materials. It was also observed that the effect of fiber orientation in the composite materials on the stress intensity factor decreased with the increase in the difference in stiffness coefficients between foam and composite.


2013 ◽  
Vol 275-277 ◽  
pp. 208-214
Author(s):  
Xue Xia Zhang ◽  
Zhi Xin Hu ◽  
Wen Bin Zhao ◽  
Chan Li

The problem of anti-plane crack in infinity orthotropic functionally graded materials is studied by using of integral transforms-dual integral equations. The shear modulus in the two principal directions of the functionally graded material was assumed to vary proportionately as gradient model of double parameters. And the variation curves of the dimensionless stress intensity factor with the orthogonal parameter and the crack length have been obtained by using the mathematical software .The results shows that stress intensity factor increases with the increasing of and a. It means that stress intensity factor decreases as the shear modulus of perpendicular to crack direction increased.


Sign in / Sign up

Export Citation Format

Share Document