Teaching Metaphorical Generation via Tact and Match-to-Sample Instructions: A Brief Report

Author(s):  
Gabrielle T. Lee ◽  
Xiaoyi Hu ◽  
Shuiling Liu
Keyword(s):  
2004 ◽  
Author(s):  
Bennett L. Schwartz ◽  
Megan L. Hoffman ◽  
Genevieve P. Tessier

2014 ◽  
Vol 112 (6) ◽  
pp. 1584-1598 ◽  
Author(s):  
Marino Pagan ◽  
Nicole C. Rust

The responses of high-level neurons tend to be mixtures of many different types of signals. While this diversity is thought to allow for flexible neural processing, it presents a challenge for understanding how neural responses relate to task performance and to neural computation. To address these challenges, we have developed a new method to parse the responses of individual neurons into weighted sums of intuitive signal components. Our method computes the weights by projecting a neuron's responses onto a predefined orthonormal basis. Once determined, these weights can be combined into measures of signal modulation; however, in their raw form these signal modulation measures are biased by noise. Here we introduce and evaluate two methods for correcting this bias, and we report that an analytically derived approach produces performance that is robust and superior to a bootstrap procedure. Using neural data recorded from inferotemporal cortex and perirhinal cortex as monkeys performed a delayed-match-to-sample target search task, we demonstrate how the method can be used to quantify the amounts of task-relevant signals in heterogeneous neural populations. We also demonstrate how these intuitive quantifications of signal modulation can be related to single-neuron measures of task performance ( d′).


2004 ◽  
Vol 18 (3) ◽  
pp. 306-321 ◽  
Author(s):  
Christian Habeck ◽  
Brian C. Rakitin ◽  
James Moeller ◽  
Nikolaos Scarmeas ◽  
Eric Zarahn ◽  
...  

2004 ◽  
Vol 16 (5) ◽  
pp. 889-901 ◽  
Author(s):  
Andreas Nieder ◽  
Earl K. Miller

Monkeys have been introduced as model organisms to study neural correlates of numerical competence, but many of the behavioral characteristics of numerical judgments remain speculative. Thus, we analyzed the behavioral performance of two rhesus monkeys judging the numerosities 1 to 7 during a delayed match-to-sample task. The monkeys showed similar discrimination performance irrespective of the exact physical appearance of the stimuli, confirming that performance was based on numerical information. Performance declined smoothly with larger numerosities, and reached discrimination threshold at numerosity “4.” The nonverbal numerical representations in monkeys were based on analog magnitudes, object tracking process (“subitizing”) could not account for the findings because the continuum of small and large numbers shows a clear Weber fraction signature. The lack of additional scanning eye movements with increasing set sizes, together with indistinguishable neuronal response latencies for neurons with different preferred numerosities, argues for parallel encoding of numerical information. The slight but significant increase in reaction time with increasing numerosities can be explained by task difficulty and consequently time-consuming decision processes. The behavioral results are compared to single-cell recordings from the prefrontal cortex in the same subjects. Models for numerosity discrimination that may account for these results are discussed.


2010 ◽  
Vol 189 (2) ◽  
pp. 210-215 ◽  
Author(s):  
Jouni Ihalainen ◽  
Timo Sarajärvi ◽  
Susanna Kemppainen ◽  
Pekka Keski-Rahkonen ◽  
Marko Lehtonen ◽  
...  

2016 ◽  
Vol 283 (1827) ◽  
pp. 20160083 ◽  
Author(s):  
Helen M. Ditz ◽  
Andreas Nieder

The ability to estimate number is widespread throughout the animal kingdom. Based on the relative close phylogenetic relationship (and thus equivalent brain structures), non-verbal numerical representations in human and non-human primates show almost identical behavioural signatures that obey the Weber–Fechner law. However, whether numerosity discriminations of vertebrates with a very different endbrain organization show the same behavioural signatures remains unknown. Therefore, we tested the numerical discrimination performance of two carrion crows ( Corvus corone ) to a broad range of numerosities from 1 to 30 in a delayed match-to-sample task similar to the one used previously with primates. The crows' discrimination was based on an analogue number system and showed the Weber-fraction signature (i.e. the ‘just noticeable difference’ between numerosity pairs increased in proportion to the numerical magnitudes). The detailed analysis of the performance indicates that numerosity representations in crows are scaled on a logarithmically compressed ‘number line’. Because the same psychophysical characteristics are found in primates, these findings suggest fundamentally similar number representations between primates and birds. This study helps to resolve a classical debate in psychophysics: the mental number line seems to be logarithmic rather than linear, and not just in primates, but across vertebrates.


2020 ◽  
Author(s):  
Christina Gobin ◽  
Lizhen Wu ◽  
Marek Schwendt

AbstractThe delayed match-to-sample task (DMS) is used to probe working memory (WM) across species. While the involvement of the PFC in this task has been established, limited information exists regarding the recruitment of broader circuitry, especially under the low- versus high-WM load. We sought to address this question by using a variable-delay operant DMS task. Male Sprague-Dawley rats were trained and tested to determine their baseline WM performance across all (0-24s) delays. Next, rats were tested in a single DMS test with either 0s or 24s fixed delay, to assess low-/high-load WM performance. c-Fos mRNA expression was quantified within cortical and subcortical regions and correlated with WM performance. High WM load upregulated overall c-Fos mRNA expression within the PrL, as well as within a subset of mGlu5+ cells, with load-dependent, local activation of protein kinase C as the proposed underlying molecular mechanism. The PrL activity negatively correlated with choice accuracy during high load WM performance. A broader circuitry, including several subcortical regions, was found to be activated under low and/or high load conditions. These findings highlight the role of mGlu5 and/or PKC dependent signaling within the PrL, and corresponding recruitment of subcortical regions during high-load WM performance.


Sign in / Sign up

Export Citation Format

Share Document