scholarly journals Filtration and fertilisation effects of the bivalves Mytilus edulis and Magallana gigas on the kelp Saccharina latissima in tank culture

Author(s):  
Matthew S. Hargrave ◽  
Anothai Ekelund ◽  
Göran M. Nylund ◽  
Henrik Pavia

AbstractBiofouling by opportunistic epiphytes is a major concern in seaweed aquaculture. Colonisation of fouling organisms contributes to a reduction in algal performance as well as a lower quality crop. Further, epiphyte removal techniques often increase maintenance costs of cultivation systems. There have been a variety of methods to mitigate fouling in tank cultivations of seaweed, including the use of biological controls. Here, we present the use of filter feeding bivalves, the blue mussel (Mytilus edulis) and Pacific oyster (Magallana gigas), as a novel biofilter that also serves as a source of dissolved inorganic nitrogen in tank cultivations of the sugar kelp, Saccharina latissima. We observed significant reductions of fouling epiphytes on seaweed blades of around 50% by bivalve filtration, significant elevations of ammonium (NH4+) and phosphate (PO43−) by bivalves and alterations to kelp tissue quality when co-cultivated with bivalves rather than supplied with ambient seawater. Stable isotope ratios and seawater chlorophyll a concentrations provided evidence for bivalve biofiltration and the incorporation of their by-products into kelp tissue.

Author(s):  
Lars C. Gansel ◽  
Per Christian Endresen ◽  
Kristine Braaten Steinhovden ◽  
Stine Wiborg Dahle ◽  
Eirik Svendsen ◽  
...  

Biofouling is a serious problem in marine finfish aquaculture with a number of negative impacts. Marine growth obstructs net openings, thereby reducing water exchange through the net and affecting fish welfare and health, as well as the spreading of dissolved nutrients, particles and pathogens. Furthermore, additional water blockage leads to increased hydrodynamic forces on fish cages, which potentially threaten the structural integrity of the fish farm. However, detailed knowledge about the effects of biofouling on the flow past, and the resulting forces on fish cages, is limited and systematic investigations of the effects of different types of fouling have been called for. This study investigates the effects of different amounts and sizes of two important fouling organisms in Norwegian aquaculture, blue mussel (Mytilus edulis) and kelp (Saccharina latissima) on the drag on net panels. Drag forces on a number of clean and fouled nets were measured in a flume tank at a flow speed of 0.1 m/s. Net solidity was calculated from images acquired of all nets in the current. The relationship between net solidity and drag was then found for clean nets and for each type of fouling, and biofouling was parameterized by comparing clean and fouled net results: for a given fouled net, a clean net can be found that experiences the same drag. The latter can then be used in numerical models to estimate the effect of fouling on net drag. That means existing models can be used to model the drag effect of fouling. This study found a solidity increase due to mussel and kelp fouling to affect drag roughly at the same rate as an increase in clean net solidity at a flow speed of 0.1 ms−1 and within the tested fouling size range for two net types. Therefore, existing models, describing the relationship between net solidity and drag, can be used directly or with minor alterations (especially at high solidities) to estimate effects of additional mussel and kelp fouling on drag. In contrast, wet weight seems to be unsuitable as a measure to estimate drag on nets fouled with seaweed or mussels. It should be noted that these findings are only valid under similar conditions, and that other fouling types and sizes, as well as test parameters and tank size can affect the relationship between solidity and drag.


2016 ◽  
Vol 25 ◽  
pp. 107-119 ◽  
Author(s):  
B Vismann ◽  
M Wejlemann Holm ◽  
JK Davids ◽  
P Dolmer ◽  
MF Pedersen ◽  
...  

2012 ◽  
Vol 9 (9) ◽  
pp. 12019-12046 ◽  
Author(s):  
E. A. A. Versteegh ◽  
M. E. Blicher ◽  
J. Mortensen ◽  
S. Rysgaard ◽  
T. D. Als ◽  
...  

Abstract. Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and kitchen middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (< ~19), because the mussels appear to cease growing. This implies that M. edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south-north gradient, and by sampling shells from raised shorelines and kitchen middens from prehistoric settlements in Greenland.


Marine Drugs ◽  
2013 ◽  
Vol 11 (12) ◽  
pp. 975-990 ◽  
Author(s):  
Lucie Beaulieu ◽  
Jacinthe Thibodeau ◽  
Claudie Bonnet ◽  
Piotr Bryl ◽  
Marie-Elise Carbonneau

2012 ◽  
Vol 9 (12) ◽  
pp. 5231-5241 ◽  
Author(s):  
E. A. A. Versteegh ◽  
M. E. Blicher ◽  
J. Mortensen ◽  
S. Rysgaard ◽  
T. D. Als ◽  
...  

Abstract. Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We investigate its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring during the years 2007 to 2010. Results show that δ18Ow values were not recorded at very low salinities (< ~ 19), because the mussels appear to cease growing. This implies that Mytilus edulis δ18Oc values are suitable in reconstructing past meltwater amounts in most cases, but care has to be taken that shells are collected not too close to a glacier, but rather in the mid-region or mouth of the fjord. The focus of future research will expand on the geographical and temporal range of the shell measurements by sampling mussels in other fjords in Greenland along a south–north gradient, and by sampling shells from raised shorelines and archaeological shell middens from prehistoric settlements in Greenland.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 883-894
Author(s):  
Liqin Cao ◽  
Ellen Kenchington ◽  
Eleftherios Zouros

Abstract In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.


2021 ◽  
Vol 167 ◽  
pp. 112295
Author(s):  
Amina Khalid ◽  
Aurore Zalouk-Vergnoux ◽  
Samira Benali ◽  
Rosica Mincheva ◽  
Jean-Marie Raquez ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document