saccharina latissima
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 149)

H-INDEX

28
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
Author(s):  
Francisco J. L. Gordillo ◽  
Raquel Carmona ◽  
Carlos Jiménez

Continuous winter darkness at a latitude of 79°N was simulated in cultures of four species of Arctic seaweeds at 3 and 8°C. The laminarians Saccharina latissima and Alaria esculenta, and the rhodophytes Phycodrys rubens and Ptilota gunneri were monitored for 4 months in total darkness and after 1 week following light return in early spring, under controlled laboratory conditions. Biomass loss during darkness was enhanced by the high temperature in all species. At 8°C, the two laminarians were unable to resume growth upon re-illumination. Alaria esculenta showed new blade production by the end of the dark period, but only at 3°C. In all species, the photosynthetic ability was sustained, not suspended, during the whole dark period. P. rubens exhibited lower photosynthetic potential at 8°C than at 3°C during the darkness period, but it was able to recover its O2 evolving potential upon re-illumination, as P. gunneri and S. latissima did, but the latter only at 3°C. The reactivation of photosynthesis seemed to involve photosystem II over photosystem I, as 7 d of photoperiod after the prolonged darkness was not enough to fully recover the PAM-related photosynthetic parameters. Only small changes were recorded in the internal chemical composition (total C, total N, carbohydrates, proteins, and lipids), but species-specific differences were observed. Unlike subarctic areas with an operating photoperiod along the year, a warmer polar night might pose a limit to the ability of multi-year seaweeds to occupy the new ice-free illuminated areas of the Arctic coasts, so that newcomers will potentially be restricted to the spring-summer season.


2022 ◽  
Vol 8 ◽  
Author(s):  
Reina Elisabeth Vellinga ◽  
Matthijs Sam ◽  
Hans Verhagen ◽  
Lea Sletting Jakobsen ◽  
Gitte Ravn-Haren ◽  
...  

Background: Seaweed has a high potential for nourishing the future planet. However, besides being beneficial, it also contains adverse components; this poses the question whether consumption of seaweed foods overall contributes beneficially or detrimentally to human health, and hence if their consumption should be promoted or restricted.Methods: This study evaluated the impact of substituting regular foods with seaweed foods in the diet, both in terms of nutritional quality (via iodine and sodium) and food safety (via arsenic, cadmium, lead, and mercury). Food consumption data from the Netherlands and Portugal (adults aged >18 years) were used, in which 10% of the amounts of pasta, bacon, and lettuce consumed were replaced by seaweed-derived products made from kelp (Saccharina latissima). Using Monte Carlo Risk Assessment software (MCRA), long-term nutrient intake and exposure to contaminants were assessed. The results obtained for the Netherlands and Portugal were compared with data from Japan, a country that has a high natural consumption of seaweed.Results: This low-tier risk-benefit study reveals that an increased seaweed consumption (as assessed by the 10% replacement with seaweed products) has no consequences in terms of intake of sodium and exposure to cadmium, lead, and mercury, and the associated (absence of) adverse health aspects. The alternative scenario almost doubled the mean iodine intake in the Netherlands (to 300 μg/day) and Portugal (to 208 μg/day) and increased the average exposure to arsenic levels in the Netherlands (to 1.02 μg/kg bw/day) and Portugal (to 1.67 μg/kg bw/day).Conclusion: The intake of iodine and exposure to arsenic in the Netherland and Portugal were certainly higher due to the modeled increase of seaweed foods. If seaweed consumption increases close to the 10% substitution, the public health consequences thereof may trigger further research.


2022 ◽  
Vol 61 ◽  
pp. 102602
Author(s):  
Teis Boderskov ◽  
Michael Bo Rasmussen ◽  
Christian Hein Cassard ◽  
Julie Svensgaard ◽  
Laurids Nørskov Enevoldsen ◽  
...  

Author(s):  
Ditte B. Hermund ◽  
Ioanna Anagnostara ◽  
Xiaoru Hou ◽  
Maria Dalgaard Mikkelsen ◽  
Nanna Rhein‐Knudsen ◽  
...  

2021 ◽  
Vol 937 (2) ◽  
pp. 022057
Author(s):  
E Panova ◽  
G Voskoboinikov

Abstract The algae Saccharina latissima (Phaeophyceae) and bottom sediment were studied in two places of its habitat in the Zelenetskaya Bay of the Barents Sea: 1) in the zone of shipping traffic and ship parking (ZST&SP) and 2) algae plantations (AP) - the background part of the bay. According to the results of scanning electron microscopy and micro-X-ray spectral analysis, an active new formation of framboidal pyrite, iron oxides-hydroxides, and salt crystals were founded in the bottom sediment in the ZCST&SP of the bay. In the structure of the rhizoids of the thallom algae, inclusions of bottom sediment particles were revealed. The ICP MS method showed that the arsenic content in the S. latissima thallom significantly exceeds its level of presence in the bottom sediment. The maximum content of arsenic in algae from both habitats is determined in the rhizoids, and the lowest in the young part of the plate (meristem). The bottom sediment and thallom of S. latissima from the ZCST&SP contain two to three times more arsenic than the algae on the plantation.


Author(s):  
Alexander P. J. Ebbing ◽  
Gregory S. Fivash ◽  
Ronald Pierik ◽  
Tjeerd J. Bouma ◽  
Jacco C. Kromkamp ◽  
...  

AbstractThe future of large-scale kelp aquaculture is standing at a crossroad, with the diverging paths being characterized by two fundamentally different cultivation methods that differ on how well gametophyte reproduction can be controlled. The cultivation method that does not directly control gametophyte reproduction is more widely utilized at the moment, but interest in better controlling gametophyte reproduction is growing steadily. Here, we validate a bioreactor system that overcomes a number of implementation challenges for this controlled reproductive method, expanding the possibility of clonal gametophyte cultivation outside of expensive laboratory settings. The main goals of this system include (i) the maintenance of clean gametophyte clonal cultures in non-sterile environments over prolonged periods of time, (ii) the production of large numbers of juvenile sporophytes, and (iii) effective transportation of gametophytes and sporophytes. The “SeaCoRe system” consists out of three parts that correspond to these three challenges: (1) clone-reactors, (2) a clone-inducer, and (3) a transporter. The validation of the system showed that delayed Saccharina latissima and Alaria esculenta gametophytes can grow reliably for 75 days in the clone-reactors. Initial gametophyte densities of 0.4 mg DW and 0.6 mg DW gametophtyes mL−1 were optimal for S. latissima and A. esculenta, resulting in reproductive successes of 604 and 422 sporophytes mL−1, respectively. Lastly, gametophyte transport was simulated, with high reproductive success still achieved within 19 days in ~ 20 °C environments. The SeaCoRe system helps unlock the full potential of large-scale kelp cultivation using multiannual delayed clonal.


2021 ◽  
Vol 11 (22) ◽  
pp. 10681
Author(s):  
Diana Pacheco ◽  
Giuseppe Miranda ◽  
Carolina P. Rocha ◽  
Rosinda L. Pato ◽  
João Cotas ◽  
...  

Seaweeds have been incorporated in the daily diet of several human cultures since ancient times, due to their nutritional characteristics and healthy properties. The brown seaweeds Undaria pinnatifida, Saccharina latissima, Sacchoriza polyschides, and Laminaria ochroleuca were collected in the Viana do Castelo (Portugal) bay to assess their proximate composition analysis. As a result, the algal biomass was dried, and its moisture and ash content were determined. The dried biomass was then analyzed for total nitrogen/total protein (using the Kjeldahl method), total fiber content (through fiber analyzer digestion), total lipids (in a Soxhlet apparatus), and fatty acid characterization (by gas chromatography-mass spectrometry). Apart from phosphorus, which was analyzed by spectrophotometry, the ashes were employed for mineral and trace element characterization via dry mineralization and quantified using flame atomic absorption spectrometry. Moreover, the total phenolic content was assessed spectrophotometrically by the Folin-Ciocalteu method in the algal aqueous extracts. Analyses showed that their protein concentrations ranged from 12 to 24% dry weight (DW), while lipid concentrations varied between 0.51% and 1.52% DW. Regarding the carbohydrate concentration in these seaweeds, a concentration between 48% and 60% DW was observed. The S. polyschides had the highest overall total phenolic content (6.19 × 10−3 g GAE/100 g of dried algae), while L. ochroleuca had the lowest amount (3.72 × 10−3 g GAE/100 g of dried algae). U. pinnatifida had the highest total fatty acid content (35.13 mg/g DW), whereas S. latissima presented the lowest value (22.59 mg/g DW). Significant concentrations of highly unsaturated fatty acids (HUFA) were observed in both seaweeds, with U. pinnatifida having the highest value (10.20 mg/g DW) and S. latissima the lowest content (4.81 mg/g DW). It is also highlighted that these seaweeds have a nutritional relevance as a source of essential nutrients, including nitrogen, potassium, sodium, calcium, magnesium, and iron.


2021 ◽  
Vol 9 (11) ◽  
pp. 1250
Author(s):  
Alexander P. J. Ebbing ◽  
Gregory S. Fivash ◽  
Nuria B. Martin ◽  
Ronald Pierik ◽  
Tjeerd J. Bouma ◽  
...  

Multiannual delayed gametophyte cultures can stay vegetative for years, while also having the ability to grow. This study aims to investigate whether male and female multiannual delayed gametophyte strains of the species Saccharina latissima and Alaria esculenta grow at different rates in culture. We furthermore assessed how changing sex ratios can affect the reproductive yields of these cultures. The results indicate that the reproductive yield of cultures declines with decreasing male:female ratios, a correlation that becomes especially apparent at higher culture densities for both species. Female gametophyte densities in particular affected the observed reproductive yield of the cultures, with S. latissima cultures showing a clear reproductive optimum (sporophytes·mL−1) at 0.013 mg·mL−1 DW female gametophyte biomass, while the reproductive success of A. esculenta peaked at a density of 0.025 mg·mL−1 DW of female gametophyte biomass, after which the reproductive yield started to decline in both species. The results show that the sex ratio of a gametophyte culture is an important biotic life cycle control, with higher amounts of female gametophyte biomass halting gametophyte reproduction. Understanding how these changing sex ratios in gametophyte cultures affect reproduction is especially important in the aquaculture of kelp, where reliable preforming cultures are key to long-term success.


2021 ◽  
Vol 8 ◽  
Author(s):  
Reinhold Fieler ◽  
Michael Greenacre ◽  
Sanna Matsson ◽  
Luiza Neves ◽  
Silje Forbord ◽  
...  

A growing trend of interest for the cultivation of kelp is driven by predictions for high global demands of important commodities, which require the development of alternative supplies of natural resources. In this study the dynamics of loss of biomass from cultivated Saccharina latissima were studied from February to August 2018 at two kelp farms in Northern (69°45.26′N/019°02.18′E) and in Mid-Norway (63°42.28′N/08°52.23′E). Kelp fronds at each farm were individually followed throughout the growing season. Sectional regression was applied for conversion of measured frond lengths to estimated dry weights. The study shows that between 40 and 100% of all individuals in the studied kelp population constantly eroded slightly from their distal ends. However, until June the accumulated loss was only 8% of produced dry weight. Due to dislodgement of whole sporophytes this picture changed in July and August to heavy losses in Mid-Norway. Thus, the overall losses of kelp in terms of accumulated dry weight were only 8–13% of the gross growth until harvest in June in Mid-Norway and August in Northern Norway. Losses increased significantly in Mid-Norway during July and reached 49.4% of the annual production in August. The rates of losses were separated into specific erosion and dislodgement rates. Erosion rates over the whole experimental period for the two sites were not significantly different, while differences in dislodgement rates between farm sites proved to be highly significant. The exported annual amount of carbon was estimated on the basis of lost and measured carbon content in the tissue. From these data a scenario was built for a commercial Norwegian kelp farm growing S. latissima showing a carbon export of 63–88 g C m–2y–1. This is eight times less than has been reported from scenarios for kelp farms in China. This study confirms that optimal timing of harvest is the most important management tool for avoidance of heavy losses from kelp farms. In conclusion, an industry with early harvest will likely have a low carbon export, while a late-harvested bulk production could export four to six times as much carbon with an increased potential for carbon sequestration.


Sign in / Sign up

Export Citation Format

Share Document