Antioxidant properties of phenolic Schiff bases: structure–activity relationship and mechanism of action

2013 ◽  
Vol 27 (11) ◽  
pp. 951-964 ◽  
Author(s):  
El Hassane Anouar ◽  
Salwa Raweh ◽  
Imene Bayach ◽  
Muhammad Taha ◽  
Mohd Syukri Baharudin ◽  
...  
2021 ◽  
Vol 14 (5) ◽  
pp. 428
Author(s):  
Douglas Kemboi Magozwi ◽  
Mmabatho Dinala ◽  
Nthabiseng Mokwana ◽  
Xavier Siwe-Noundou ◽  
Rui W. M. Krause ◽  
...  

Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure–activity relationship of Euphorbia flavonoids for the period covering 2000–2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure–activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.


Author(s):  
Ebuka Leonard Onyeyilim ◽  
Mercy Amarachi Ezeokonkwo ◽  
David Izuchukwu Ugwu ◽  
Chiamaka Peace Uzoewulu ◽  
Florence Uchenna Eze ◽  
...  

: Carbohydrazides and their Schiff bases are important class of heterocycles that are not only employed in the area of organic chemistry, but also have tremendous applications in physical and inorganic chemistry. A series of potential bioactive compounds, containing carbohydrazide functionality and their hydrazone derivatives have been synthesized and screened for antibacterial, anticancer, antifungal and anti-inflammatory etc. This brief review discloses some synthetic route to so many reported carbohydrazides, their Schiff bases, their biological activities and their structure activity relationship.


MedChemComm ◽  
2011 ◽  
Vol 2 (8) ◽  
pp. 689-697 ◽  
Author(s):  
Daniel Pla ◽  
Fernando Albericio ◽  
Mercedes Álvarez

The latest developments towards the synthesis of lamellarins, their structure–activity relationship and advances in the mechanism of action are described.


Author(s):  
Easwaramoorthi Deivanayagam ◽  
Jayaprakash R ◽  
Aroj Kumar Sha ◽  
Hemalatha S

ABSTRACTObjective: Aim of this work is to synthesize and characterization of the hydroxyl group the hydroxyl group substituted L-phenylalanine Schiff basesto compare their predicted quantitative structure-activity relationship (QSAR) and molecular docking against Escherichia coli protein ZipA (1s1j)outcomes with the antibacterial activity and brine shrimp lethal assay (BSLA) results.Methods: The Schiff bases of L-Phenylalanine were synthesized by the simple condensation reaction using methanol, water in 2:1 ratio at reflux andwere characterized by spectral techniques. QSAR parameters of the Schiff bases were predicted using java-based online and offline tools. Moleculardocking carried through online mcule server and CLC Drug Discovery Workbench 3. Antibacterial activity and toxicity studies were conducted usingbroth dilution and brine shrimp lethal assay methods, respectively.Results: The Schiff bases fulfilled the QSAR drug-likeness parameters and showed the docking score between −6.8 and −6.0 Kcal/mol which arehigher than amoxilicillin and gentamicin like standard drugs. They also possess good inhibition for urinary tract infection causing E. coli bacteria,and minimum inhibitory concentrations (MIC) exists between 3.25 and 5.25 μg/ml. The brine shrimp lethal concentration for 50% mortality [LC50])between 58.73 and 135.6 μg/ml.Conclusion: Para, meta and 2,4 hydroxyl substituted Schiff bases exhibited good inhibition against Gram-negative E. coli bacteria at low concentrationand the MIC exists below the LC50 value. The Schiff base showed high drug score, high docking score, and low toxicity than other Schiff base. Dockingscore, high inhibition, low clogP, low MICKeywords: L-phenylalanine, Schiff base, Quantitative structure-activity relationship, Docking, Antibacterial, Lethal concentration for 50% mortality.


Sign in / Sign up

Export Citation Format

Share Document