Computer-aided drug discovery research at a global contract research organization

2016 ◽  
Vol 31 (3) ◽  
pp. 309-318 ◽  
Author(s):  
Douglas B. Kitchen
2021 ◽  
Vol 16 (3) ◽  
pp. 87-91
Author(s):  
Poonam Chauhan ◽  
Monica Mendonca

The evolution of the drug development process and testing its efficacy is a primary responsibility of pharmaceutical companies. The time cost investment involved in identifying a compound suitable to its target disease and making it available to the masses eventually led to the rise of the Contract Research Organization (CRO) in the domain of clinical research.  Pharmaceutical companies outsource the research and clinical trials to CRO’s. A CRO has a vital role from drug discovery to the launch and marketing of drugs. India is emerging as attractive location for global clinical trial. It has cost advantage compared to other countries and a well-developed associated services like data management, medical writing and pharmacovigilance.  The Central Drug Standard Control Organization (CDSCO) is the National Regulatory Authority in India that aims to bring safe drugs and standardize clinical research. Pharmaceutical Companies benefit by strategically working with CRO to gain speed and efficiency in drug discovery, generation and retention of clinical data integrity. The risk associated with CRO relates to delays and inferior quality of work, thereby making CRO a critical decision for Pharmaceutical Company.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 630 ◽  
Author(s):  
Jürgen Bajorath

Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 349
Author(s):  
Asim Najmi ◽  
Sadique A. Javed ◽  
Mohammed Al Bratty ◽  
Hassan A. Alhazmi

Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher’s opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.


2016 ◽  
Vol 22 (6) ◽  
pp. 696-705 ◽  
Author(s):  
Tanut Kunkanjanawan ◽  
Richard Carter ◽  
Kwan-Sung Ahn ◽  
Jinjing Yang ◽  
Rangsun Parnpai ◽  
...  

Huntington’s disease (HD) is a neurodegenerative disease caused by an expansion of CAG trinucleotide repeat (polyglutamine [polyQ]) in the huntingtin ( HTT) gene, which leads to the formation of mutant HTT (mHTT) protein aggregates. In the nervous system, an accumulation of mHTT protein results in glutamate-mediated excitotoxicity, proteosome instability, and apoptosis. Although HD pathogenesis has been extensively studied, effective treatment of HD has yet to be developed. Therapeutic discovery research in HD has been reported using yeast, cells derived from transgenic animal models and HD patients, and induced pluripotent stem cells from patients. A transgenic nonhuman primate model of HD (HD monkey) shows neuropathological, behavioral, and molecular changes similar to an HD patient. In addition, neural progenitor cells (NPCs) derived from HD monkeys can be maintained in culture and differentiated to neural cells with distinct HD cellular phenotypes including the formation of mHTT aggregates, intranuclear inclusions, and increased susceptibility to oxidative stress. Here, we evaluated the potential application of HD monkey NPCs and neural cells as an in vitro model for HD drug discovery research.


Sign in / Sign up

Export Citation Format

Share Document