scholarly journals Relative free-energy calculations for scaffold hopping-type transformations with an automated RE-EDS sampling procedure

Author(s):  
Benjamin Ries ◽  
Karl Normak ◽  
R. Gregor Weiß ◽  
Salomé Rieder ◽  
Emília P. Barros ◽  
...  

AbstractThe calculation of relative free-energy differences between different compounds plays an important role in drug design to identify potent binders for a given protein target. Most rigorous methods based on molecular dynamics simulations estimate the free-energy difference between pairs of ligands. Thus, the comparison of multiple ligands requires the construction of a “state graph”, in which the compounds are connected by alchemical transformations. The computational cost can be optimized by reducing the state graph to a minimal set of transformations. However, this may require individual adaptation of the sampling strategy if a transformation process does not converge in a given simulation time. In contrast, path-free methods like replica-exchange enveloping distribution sampling (RE-EDS) allow the sampling of multiple states within a single simulation without the pre-definition of alchemical transition paths. To optimize sampling and convergence, a set of RE-EDS parameters needs to be estimated in a pre-processing step. Here, we present an automated procedure for this step that determines all required parameters, improving the robustness and ease of use of the methodology. To illustrate the performance, the relative binding free energies are calculated for a series of checkpoint kinase 1 inhibitors containing challenging transformations in ring size, opening/closing, and extension, which reflect changes observed in scaffold hopping. The simulation of such transformations with RE-EDS can be conducted with conventional force fields and, in particular, without soft bond-stretching terms.

2020 ◽  
Author(s):  
E. Prabhu Raman ◽  
Thomas J. Paul ◽  
Ryan L. Hayes ◽  
Charles L. Brooks III

<p>Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small molecule lead optimization. Relative free energy perturbation (FEP) approaches are one of the most widely utilized for this goal, but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to setup, execute, and analyze Multi-Site Lambda Dynamics (MSLD) calculations run on GPUs with CHARMm implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse dataset of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free energy landscape of any MSLD system is developed that enhances sampling and allows for efficient estimation of free energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than a hundred ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multi-site systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore chemical space around a lead compound, and thus are of utility in lead optimization.</p>


2020 ◽  
Vol 10 (6) ◽  
pp. 20200007 ◽  
Author(s):  
Shunzhou Wan ◽  
Agastya P. Bhati ◽  
Stefan J. Zasada ◽  
Peter V. Coveney

A central quantity of interest in molecular biology and medicine is the free energy of binding of a molecule to a target biomacromolecule. Until recently, the accurate prediction of binding affinity had been widely regarded as out of reach of theoretical methods owing to the lack of reproducibility of the available methods, not to mention their complexity, computational cost and time-consuming procedures. The lack of reproducibility stems primarily from the chaotic nature of classical molecular dynamics (MD) and the associated extreme sensitivity of trajectories to their initial conditions. Here, we review computational approaches for both relative and absolute binding free energy calculations, and illustrate their application to a diverse set of ligands bound to a range of proteins with immediate relevance in a number of medical domains. We focus on ensemble-based methods which are essential in order to compute statistically robust results, including two we have recently developed, namely thermodynamic integration with enhanced sampling and enhanced sampling of MD with an approximation of continuum solvent. Together, these form a set of rapid, accurate, precise and reproducible free energy methods. They can be used in real-world problems such as hit-to-lead and lead optimization stages in drug discovery, and in personalized medicine. These applications show that individual binding affinities equipped with uncertainty quantification may be computed in a few hours on a massive scale given access to suitable high-end computing resources and workflow automation. A high level of accuracy can be achieved using these approaches.


2012 ◽  
Vol 84 (9) ◽  
pp. 1919-1930 ◽  
Author(s):  
Adriana Pietropaolo

A formalism to quantify the chemical stereoselectivity, based on free energy of binding calculations, is here discussed. It is used to explain the stereoselectivity of two diastereoisomeric frameworks, comprising the dimer of a copper(II)-peptide core of L- and D-carnosine, respectively, each bound to two chains of D-trehalose, in which copper(II) adopts a type-II coordination geometry. The stereocenter of carnosine is varied both L and D, giving rise to two diastereoisomers. A thermodynamic cycle crossing the formation of the two enantiomeric copper(II) peptide cores was devised. A harmonic restraining potential that depends only on the bond distance was added to ensure reversibility in bond formation and dissociation, for an accurate estimate of the free energy. The calculation of the free energy of binding between D-trehalose and the two enantiomeric copper(II) peptide cores reproduces the free-energy quantities observed from stability constants and isothermal titration calorimetry (ITC) measurements. This is an example of chirality selection based on free-energy difference.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 686 ◽  
Author(s):  
Guilherme Duarte Ramos Matos ◽  
David L. Mobley

Background: Solubility is a physical property of high importance to the pharmaceutical industry, the prediction of which for potential drugs has so far been a hard task. We attempted to predict the solubility of acetylsalicylic acid (ASA) by estimating the absolute chemical potentials of its most stable polymorph and of solutions with different concentrations of the drug molecule. Methods: Chemical potentials were estimated from all-atom molecular dynamics simulations.  We used the Einstein molecule method (EMM) to predict the absolute chemical potential of the solid and solvation free energy calculations to predict the excess chemical potentials of the liquid-phase systems. Results: Reliable estimations of the chemical potentials for the solid and for a single ASA molecule using the EMM required an extremely large number of intermediate states for the free energy calculations, meaning that the calculations were extremely demanding computationally. Despite the computational cost, however, the computed value did not agree well with the experimental value, potentially due to limitations with the underlying energy model. Perhaps better values could be obtained with a better energy model; however, it seems likely computational cost may remain a limiting factor for use of this particular approach to solubility estimation.    Conclusions: Solubility prediction of drug-like solids remains computationally challenging, and it appears that both the underlying energy model and the computational approach applied may need improvement before the approach is suitable for routine use.


Author(s):  
Junjie Zou ◽  
Jian Yin ◽  
Lei Fang ◽  
Mingjun Yang ◽  
Tianyuan Wang ◽  
...  

<p>The ability of coronaviruses to infect humans is invariably associated with their binding strengths to human receptor proteins. Both SARS-CoV-2, initially named 2019-nCoV, and SARS-CoV were reported to utilize angiotensin-converting enzyme 2 (ACE2) as an entry receptor in human cells. To better understand the interplay between SARS-CoV-2 and ACE2, we performed computational alanine scanning mutagenesis on the “hotspot” residues at protein-protein interfaces using relative free energy calculations. Our data suggest that the mutations in SARS-CoV-2 lead to a greater binding affinity relative to SARS-CoV. In addition, our free energy calculations provide insight into the infectious ability of viruses on a physical basis, and also provide useful information for the design of antiviral drugs.</p>


2021 ◽  
Author(s):  
Zhaoxi Sun ◽  
Qiaole He

<p>The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method is often applied to obtain the QM thermodynamics by combining the SQM or MM thermodynamics and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (~20 fold) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another consequence of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Therefore, some tests are required to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The ASMD method is tested thoroughly on a dihedral flipping model system and encouraging numerical results are obtained. The selection-criterion-based multi-dimensional ASMD framework follows the same perturbation framework of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.</p>


2021 ◽  
Author(s):  
Zhaoxi Sun ◽  
Qiaole He

The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (~20 folds) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. Introducing very short ps-length equilibrium sampling to grab more initial seeds could also be helpful. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another deficiency of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Numerical tests are performed to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The presented selection-criterion-based multi-dimensional ASMD scheme follows the same perturbation network of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.


2019 ◽  
Author(s):  
Braden Kelly ◽  
William Smith

We present an algorithm to calculate hydration free energies in explicit solvent that incorporates polarization of the solute molecule in conjunction with the use of a classical fixed--charge force field. The goal is to improve the accuracy over the alternative approach of developing a polarizable force field with adjustable parameters. We incorporate polarization by implementing on--the--fly periodic updating of the solute's partial charges during a standard molecular dynamics (MD) alchemical change simulation by the use of mixed QM/MM calculations. We decouple the polarizing solvent's electric field along with the normal MD solute Coulomb decoupling to calculate the free energy difference between an unpolarized solute in vacuum and a fully polarized solute in solution. This approach is in contrast to the common approach of GAFF, which calculates the difference between a solute in vacuum that is over--polarized by the use of fixed charges calculated using HF/6-31G*, and correspondingly under--polarized by the same partial charge set in the solution phase. We apply our methodology to a test set of 31 molecules, ranging from small polar to large drug--like molecules. We find that results using our method with Minimum Basis Iterative Stockholder (MBIS) charges and using RESP charges with B3LYP/cc-pVTZ are superior to results calculated using the current ``gold standard" AM1--BCC method. We show results using MBIS partial charges using B3LYP/cc-pVTZ and MP2/cc-pVTZ, RESP partial charges using B3LYP/cc-pVTZ and HF/6-31G*, and AM1-BCC partial charges. Our method using MBIS in conjunction with MP2/cc-pVTZ yields an AAD that is 2.91 kJ$\cdot$mol$^{-1}$ (0.70 kcal$\cdot$mol$^{-1}$) lower than that of AM1--BCC for our test set. AM1-BCC was within experimental uncertainty on 13 \% of the data, while our method using MP2 was within experimental uncertainty on 43 \% of the data. We conjecture that results can be further improved by using Lennard--Jones and torsional parameters that are fitted to the MBIS charge method and that using RESP with our method can be improved by using a higher level of theory than B3LYP, for instance MP2 or $\omega$B97X-D.


Sign in / Sign up

Export Citation Format

Share Document