An accurate computation method based on artificial neural networks with different learning algorithms for resonant frequency of annular ring microstrip antennas

2014 ◽  
Vol 13 (4) ◽  
pp. 1014-1019 ◽  
Author(s):  
Ali Akdagli ◽  
Ahmet Kayabasi
2018 ◽  
Vol 19 (12) ◽  
pp. 570-574
Author(s):  
Halina Nieciąg ◽  
Rafał Kudelski ◽  
Krzysztof Zagórski

The article presents the application of artificial intelligence methods in the form of artificial neural networks (SSN) for modeling the geometrical state of a product shaped in the EDM process. The SSN with different architecture and different learning algorithms were implemented. The models' quality and their effectiveness in predicting some geometrical features of tool steel products were examined.


Author(s):  
Aleksejs Zorins ◽  
Peteris Grabusts

<p class="R-AbstractKeywords">There are numerous applications of Artificial Neural Networks (ANN) at the present time and there are different learning algorithms, topologies, hybrid methods etc. It is strongly believed that ANN is built using human brain’s functioning principles but still ANN is very primitive and tricky way for real problem solving. In the recent years modern neurophysiology advanced to a big extent in understanding human brain functions and structure, however, there is a lack of this knowledge application to real ANN learning algorithms. Each learning algorithm and each network topology should be carefully developed to solve more or less complex problem in real life. One may say that almost each serious application requires its own network topology, algorithm and data pre-processing. This article presents a survey of several ways to improve ANN learning possibilities according to human brain structure and functioning, especially one example of this concept – neuroplasticity – automatic adaptation of ANN topology to problem domain.</p>


Author(s):  
Mahmood Abbasi Layegh ◽  
Changiz Ghobadi ◽  
Javad Nourinia

This paper attempts at applying adaptive network-based fuzzy inference system (ANFIS) for analysis of the resonant frequency of a microstrip rectangular patch antenna with two equal size slots which are placed on the patch vertically. The resonant frequency is calculated as the position of slots is shifted to the right and left sides on the patch. As a result , the antenna resonates at more than one frequency . Commonly, machine algorithms based on artificial neural networks are employed to recognize the whole resonant frequencies. However ,they fail to estimate the resonant frequencies correctly as in some cases variations are not very sensible and the resonant frequencies overlap each other . It can be concluded that artificial neural networks could be replaced in such designs by the adaptive network-based fuzzy Inference system due to its high approximation capability and much faster convergence rate.


Author(s):  
Darryl Charles ◽  
Colin Fyfe ◽  
Daniel Livingstone ◽  
Stephen McGlinchey

In this chapter we will look at supervised learning in more detail, beginning with one of the simplest (and earliest) supervised neural learning algorithms – the Delta Rule. The objectives of this chapter are to provide a solid grounding in the theory and practice of problem solving with artificial neural networks – and an appreciation of some of the challenges and practicalities involved in their use.


Sign in / Sign up

Export Citation Format

Share Document