Permeability Prediction Using Artificial Neural Networks. A Comparative Study Between Back Propagation and Levenberg–Marquardt Learning Algorithms

Author(s):  
Leila Aliouane ◽  
Sid-Ali Ouadfeul ◽  
Noureddine Djarfour ◽  
Amar Boudella
2017 ◽  
Vol 23 (2) ◽  
pp. 251-258 ◽  
Author(s):  
Mohsen Beigi ◽  
Mehdi Torki-Harchegani ◽  
Mahmood Mahmoodi-Eshkaftaki

The present study aimed at investigation of deep bed drying of rough rice kernels at various thin layers at different drying air temperatures and flow rates. A comparative study was performed between mathematical thin layer models and artificial neural networks to estimate the drying curves of rough rice. The suitability of nine mathematical models in simulating the drying kinetics was examined and the Midilli model was determined as the best approach for describing drying curves. Different feed forward-back propagation artificial neural networks were examined to predict the moisture content variations of the grains. The ANN with 4-18-18-1 topology, transfer function of hyperbolic tangent sigmoid and a Levenberg-Marquardt back propagation training algorithm provided the best results with the maximum correlation coefficient and the minimum mean square error values. Furthermore, it was revealed that ANN modeling had better performance in prediction of drying curves with lower root mean square error values.


2013 ◽  
Vol 773-774 ◽  
pp. 268-274
Author(s):  
Amir Ghiami ◽  
Ramin Khamedi

This paper presents an investigation of the capabilities of artificial neural networks (ANN) in predicting some mechanical properties of Ferrite-Martensite dual-phase steels applicable for different industries like auto-making. Using ANNs instead of different destructive and non-destructive tests to determine the material properties, reduces costs and reduces the need for special testing facilities. Networks were trained with use of a back propagation (BP) error algorithm. In order to provide data for training the ANNs, mechanical properties, inter-critical annealing temperature and information about the microstructures of many specimens were examined. After the ANNs were trained, the four parameters of yield stress, ultimate tensile stress, total elongation and the work hardening exponent were simulated. Finally a comparison of the predicted and experimental values indicates that the results obtained from the given input data reveal a good ability of the well-trained ANN to predict the described mechanical properties.


2021 ◽  
Author(s):  
Mateus Alexandre da Silva ◽  
Marina Neves Merlo ◽  
Michael Silveira Thebaldi ◽  
Danton Diego Ferreira ◽  
Felipe Schwerz ◽  
...  

Abstract Predicting rainfall can prevent and mitigate damages caused by its deficit or excess, besides providing necessary tools for adequate planning for the use of water. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities in the metropolitan region of Belo Horizonte, using artificial neural networks (ANN) trained with different climate variables, and to indicate the suitability of such variables as inputs to these models. The models were developed through the MATLAB® software version R2011a, using the NNTOOL toolbox. The ANN’s were trained by the multilayer perceptron architecture and the Feedforward and Back propagation algorithm, using two combinations of input data were used, with 2 and 6 variables, and one combination of input data with 3 of the 6 variables most correlated to observed rainfall from 1970 to 1999, to predict the rainfall from 2000 to 2009. The most correlated variables to the rainfall of the following month are the sequential number corresponding to the month, total rainfall and average compensated temperature, and the best performance was obtained with these variables. Furthermore, it was concluded that the performance of the models was satisfactory; however, they presented limitations for predicting months with high rainfall.


2013 ◽  
Vol 14 (6) ◽  
pp. 431-439 ◽  
Author(s):  
Issam Hanafi ◽  
Francisco Mata Cabrera ◽  
Abdellatif Khamlichi ◽  
Ignacio Garrido ◽  
José Tejero Manzanares

Radio Science ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1328-1345 ◽  
Author(s):  
Jean Claude Uwamahoro ◽  
Nigussie M. Giday ◽  
John Bosco Habarulema ◽  
Zama T. Katamzi‐Joseph ◽  
Gopi Krishna Seemala

Sign in / Sign up

Export Citation Format

Share Document