scholarly journals Retraction Note: Patterns of bee diversity in mosaic agricultural landscapes of central Uganda: implication of pollination services conservation for food security

2014 ◽  
Vol 18 (1) ◽  
pp. 151-151
Author(s):  
M. B. Théodore Munyuli ◽  
Philip Nyeko ◽  
Simon Potts ◽  
Phil Atkinson ◽  
Derek Pomeroy ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Panlong Wu ◽  
Piaopiao Dai ◽  
Meina Wang ◽  
Sijie Feng ◽  
Aruhan Olhnuud ◽  
...  

Bees provide key pollination services for a wide range of crops. Accumulating evidence shows the effect of semi-natural habitats at the landscape level and local management practices on bee diversity in fields. However, most of the evidence is derived from studies in North America and Europe. Whether this paradigm is applicable in China, which is characterized by smallholder-dominated agricultural landscapes, has rarely been studied. In this study, we aimed to investigate how bee diversity affected apple production, and how landscape and local variables affected bee diversity and species composition on the Northern China Plain. The results showed that bees significantly increased apple fruit set compared to bagged controls. Wild bee diversity was positively related to apple seed numbers. Higher seed numbers reduced the proportion of deformed apples and thus increased fruit quality. Wild bee abundance was positively correlated with flowering ground cover, and both the abundance and species richness of wild bees were positively affected by the percentage of semi-natural habitats. We conclude that apple quality can benefit from ecological intensification comprising the augmentation of wild bees by semi-natural habitats and flowering ground cover. Future pollination management should therefore reduce the intensification level of management at both the local and landscape scales.


2013 ◽  
Vol 29 (2) ◽  
pp. 101-125 ◽  
Author(s):  
H. Asbjornsen ◽  
V. Hernandez-Santana ◽  
M. Liebman ◽  
J. Bayala ◽  
J. Chen ◽  
...  

AbstractOver the past century, agricultural landscapes worldwide have increasingly been managed for the primary purpose of producing food, while other diverse ecosystem services potentially available from these landscapes have often been undervalued and diminished. The incorporation of relatively small amounts of perennial vegetation in strategic locations within agricultural landscapes dominated by annual crops—or perennialization—creates an opportunity for enhancing the provision of a wide range of goods and services to society, such as water purification, hydrologic regulation, pollination services, control of pest and pathogen populations, diverse food and fuel products, and greater resilience to climate change and extreme disturbances, while at the same time improving the sustainability of food production. This paper synthesizes the current scientific theory and evidence for the role of perennial plants in balancing conservation with agricultural production, focusing on the Midwestern USA as a model system, while also drawing comparisons with other climatically diverse regions of the world. Particular emphasis is given to identifying promising opportunities for advancement and critical gaps in our knowledge related to purposefully integrating perennial vegetation into agroecosystems as a management tool for maximizing multiple benefits to society.


Sociobiology ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 686 ◽  
Author(s):  
Laura Silva Nery ◽  
Juliana Toshie Takata ◽  
Bruna Bertagni De Camargo ◽  
Aryane Moreno Chaves ◽  
Patrícia Alves Ferreira ◽  
...  

Agriculture driven landscape changes has caused worldwide forest loss and fragmentation, seriously affecting biodiversity and ecosystem services, amongst which pollination is remarkably important. Bees are an essential pollinator group for forest plant populations and food production in tropical landscapes. They are also dependent on forested environments which are essential to maintain their diversity and pollination services. We analyzed bee diversity in contrasting forest and adjacent non-forest patches to evaluate if bees can use complementary non-native environments in heterogeneous altered tropical landscapes. The effect of landscape level heterogeneity and forest amount on bee diversity was also assessed. Our hypothesis was that bee communities would be more rich and diverse inside the forest understory, but due to supplementary foraging behaviors they would be more abundant in non-forested areas where flower availability is higher. We actively sampled bees visiting flowers within forest patches and in surrounding non-forest open areas between the Cantareira and Mantiqueira mountain ranges in São Paulo, Brazil. We found higher bee richness and diversity in open areas than in forest patches, partially denying our initial hypothesis but supporting that bees are more abundant in non-forest areas. We found strong indication that landscapes with higher amount of forest and environmental heterogeneity can provide more resources for bees through resource complementation processes, maintaining their diversity in the landscape. The presence of forest patches close to crop and open areas is of utmost importance for the conservation of bees and pollination services with important consequences for land management in tropical environments.


2020 ◽  
Vol 16 (5) ◽  
pp. 20190877 ◽  
Author(s):  
Richard E. Walton ◽  
Carl D. Sayer ◽  
Helen Bennion ◽  
Jan C. Axmacher

Dramatic declines in diurnal pollinators have created great scientific interest in plant–pollinator relationships and associated pollination services. Existing literature, however, is generally focused on diurnal pollinating insect taxa, especially on Apidae (Hymenoptera) and Syrphidae (Diptera) pollinators, while nocturnal macro-moths that comprise extremely species-rich flower-visiting families have been largely neglected. Here, we report that in agricultural landscapes, macro-moths can provide unique, highly complex pollen transport links, making them vital components of overall wild plant–pollinator networks in agro-ecosystems. Pollen transport occurred more frequently on the moths' ventral thorax rather than on their mouthparts that have been traditionally targeted for pollen swabbing. Pollen transport loads suggest that nocturnal moths contribute key pollination services for several wild plant families in agricultural landscapes, in addition to providing functional resilience to diurnal networks. Severe declines in richness and abundance of settling moth populations highlight the urgent need to include them in future management and conservation strategies within agricultural landscapes.


Sociobiology ◽  
2020 ◽  
Vol 67 (2) ◽  
pp. 281
Author(s):  
Mayra Layra Santos Almeida ◽  
Gabriel Santos Carvalho ◽  
Júlia Rodrigues Novais ◽  
Danielle Storck Tonon ◽  
Márcio Luiz Oliveira ◽  
...  

Agricultural landscapes sometimes include natural habitats which can support the ecosystem by enhancing the pollination of crops, thus boosting the productivity. This research was conducted between May and July 2017, in the municipality of Tangará da Serra, Mato Grosso, Brazil, to assess the Cerrado from the perspective of it being a crucial habitat to sustain the sunflower-pollinating bees (Helianthus annuus L.). The bees were sampled using entomological nets and pan traps, in specifically marked out plots (20 m x 150 m), in the Cerrado, and in a sunflower crop, at different distances from the Cerrado border. The assessment was done in terms of the composion and species richness, abundance of individuals and the mass (g) of the sunflower chapters exposed and isolated from the floral visitors. While species richness showed no differences between the Cerrado and sunflower crop, a difference was observed for abundance, with more numbers of individuals in the sunflower crop, most likely because of the food source supply. In the sunflower crop, the bee diversity decreased proportionally as the distance from the border increased. The seed mass of the sunfl ower chapters was significantly higher in the flowers open to visitors than in those of the isolated chapters open for visitation. From the results, it was evident that the bees presente in the Cerrado visit the sunflower crop to gather pollen and nectar, and thus assist in cross-pollinating them and raising the productivity.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1993
Author(s):  
Philipp W. Eckerter ◽  
Lars Albus ◽  
Sharumathi Natarajan ◽  
Matthias Albrecht ◽  
Lolita Ammann ◽  
...  

Wild bumblebees are key pollinators of crops and wild plants that rely on the continuous availability of floral resources. A better understanding of the spatio-temporal availability and use of floral food resources may help to promote bumblebees and their pollination services in agricultural landscapes. We placed colonies of Bombus terrestris L. in 24 agricultural landscapes with various degrees of floral resource availability and assessed different parameters of colony growth and fitness. We estimated pollen availability during different periods of colony development based on detailed information of the bumblebee pollen diet and the spatial distribution of the visited plant species. Total pollen availability did not significantly explain colony growth or fitness. However, when using habitat maps, the weight gain of colonies, the number of queen cells, and colony survival decreased with increasing distance from the forest. The better explanation of bumblebee performance by forest proximity than by (plant-inferred) pollen availability indicates that other functions of forests than pollen provision were important. The conservation of forests next to agricultural land might help to sustain high populations of these important wild pollinators and enhance their crop pollination services. Combining different mapping approaches might help to further disentangle complex relationships between B. terrestris and their environment in agricultural landscapes.


2016 ◽  
Vol 6 (19) ◽  
pp. 6983-6992 ◽  
Author(s):  
Parthiba Basu ◽  
Arpan Kumar Parui ◽  
Soumik Chatterjee ◽  
Aditi Dutta ◽  
Pushan Chakraborty ◽  
...  

Daedalus ◽  
2015 ◽  
Vol 144 (4) ◽  
pp. 45-56 ◽  
Author(s):  
Nathaniel D. Mueller ◽  
Seth Binder

The social, economic, and environmental costs of feeding a burgeoning and increasingly affluent human population will depend, in part, on how we increase crop production on under-yielding agricultural landscapes, and by how much. Such areas have a “yield gap” between the crop yields they achieve and the crop yields that could be achieved under more intensive management. Crop yield gaps have received increased attention in recent years due to concerns over land scarcity, stagnating crop yield trends in some important agricultural areas, and large projected increases in food demand. Recent analyses of global data sets and results from field trials have improved our understanding of where yield gaps exist and their potential contribution to increasing the food supply. Achieving yield gap closure is a complex task: while agronomic approaches to closing yield gaps are generally well-known, a variety of social, political, and economic factors allow them to persist. The degree to which closing yield gaps will lead to greater food security and environmental benefits remains unclear, and will be strongly influenced by the particular strategies adopted.


Sign in / Sign up

Export Citation Format

Share Document