Electrical properties of hybrid carbon black/carbon fiber polypropylene composites

2006 ◽  
Vol 42 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M. Drubetski ◽  
A. Siegmann ◽  
M. Narkis
2012 ◽  
Vol 217-219 ◽  
pp. 644-651
Author(s):  
Nai Xiu Ding ◽  
Li Li Wang ◽  
Mao Sheng Zhan ◽  
Liang Liu ◽  
Shuai Feng Xu

In this paper, Carbon black was activated using titanate-type coupling agent, and then filled into polypropylene to prepare conductive composites, whose alternating current (AC) electrical properties, including impendence Z, phase angel θ, dielectric constantε and dissipation factor tgδ that is a function of frequency and carbon black concentration were investigated by AC impedance spectroscopy. The percolation threshold of 5wt% carbon black concentration was obtained from the experimental result of volume resistivity for the conductive composites. It was found that the variation of AC electrical properties, which is a function of frequency, was dramatic and dependent on the filler concentration. It was also found that dependence of the real and the imaginary parts of impendence on frequency decreased with the increased concentration of carbon black, while the phase angle, dielectric constant and dissipation factor increased. The AC electrical properties were given based on the conductive network model and the corresponding equivalent circuit were concluded


2013 ◽  
Vol 712-715 ◽  
pp. 175-181 ◽  
Author(s):  
Nai Xiu Ding ◽  
Li Li Wang ◽  
Pei Yan Zuo ◽  
Yong Li ◽  
Guang Ye Liu

Carbon black was activated and then filled into polypropylene to prepare conductive composites, of which the electrical properties, including impedance Z, phase angelθ and dissipation factor tgδ, as a function of frequency and carbon black concentration were investigated using impedance analyzer. The percolation threshold of 5wt% carbon black concentration was obtained. It was found that the variation of AC electrical properties as a function of frequency is dramatic and dependent on the carbon black concentration. It was also found that dependence of the real part and the imaginary part of impedance on frequency decreases with the increased concentration of carbon black, while that of phase angle and dissipation factor increases. Based on the corresponding results, the conductive network model and the corresponding equivalent circuit were constructed.


2019 ◽  
Vol 178 ◽  
pp. 107502
Author(s):  
Jun Tang ◽  
Yentl Swolfs ◽  
Arya Aslani ◽  
Lorenzo Mencattelli ◽  
Gianmaria Bullegas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document