Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites

2014 ◽  
Vol 62 ◽  
pp. 113-120 ◽  
Author(s):  
Alper Kasgoz ◽  
Dincer Akın ◽  
Ali Durmus
2001 ◽  
Vol 61 (6) ◽  
pp. 903-909 ◽  
Author(s):  
T.A Ezquerra ◽  
M.T Connor ◽  
S Roy ◽  
M Kulescza ◽  
J Fernandes-Nascimento ◽  
...  

2019 ◽  
Vol 10 (41) ◽  
pp. 5578-5583 ◽  
Author(s):  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Koh-hei Nitta ◽  
Takeshi Shiono

The increase of aggregation number in a star-shaped cyclic olefin copolymer was succeeded by using a triazine-based secondary amine, which caused a drastic change in physical properties without changing the thermal properties.


2010 ◽  
Vol 168-170 ◽  
pp. 1021-1024
Author(s):  
Guo Xuan Xiong ◽  
Zhi Bin Zhang ◽  
Min Deng ◽  
Yu Fen Zhou

The cement-based composite shielding materials filled with carbon materials such as ordinary carbon materials (graphite, coke and carbon black), carbon fiber and nano-carbon materials (carbon nano-tube and nano-carbon black) were prepared. The relationship of conductivity and shielding effectiveness in a frequency range of 100 KHz~1.5 GHz was studied. The electric properties of cement-based composites filled with carbon fiber is better than other carbon materials. With the contents of carbon fiber of 5.vol%, the average shielding effectiveness is about 37 dB and the maximum shielding effectiveness reaches 40 dB.


2009 ◽  
Vol 151 ◽  
pp. 67-71 ◽  
Author(s):  
Wai Kit Li ◽  
Y.W. Wong

Electrospinning is an efficient technique for the fabrication of polymer nanofibers. The charges inside the polymer jet tend to repel each other so as to stretch and reduce the diameter of the polymer fibers. By rotating the collector at a fast angular speed, nanofibers with specific orientation can be obtained. In this study, nanofibers of Polyethylene oxide (PEO) with carbon black were prepared by electrospinning. PEO was dissolved in a mixture of water and ethanol. PEO is known as an electrolytic polymer. With the blending of carbon black powders, its electrical properties along the fiber direction were investigated. The fiber morphology and characteristics were studied by SEM and polarized FTIR.


2020 ◽  
Vol 9 (1) ◽  
pp. 445-454 ◽  
Author(s):  
Juhong Han ◽  
Dunbin Wang ◽  
Peng Zhang

AbstractIn this study, the pressure sensitivity and temperature sensitivity of the diphasic electric conduction concrete were investigated by measuring the resistivity using the four-electrode method. The diphasic electric conduction concrete was obtained by mixing nano and micro conductive materials (carbon nanofibers, nano carbon black and steel slag powder) into the carbon fiber reinforced concrete (CFRC). The results indicated that, with the increase of conduction time, the resistivity of CFRC decreased slightly at the initial stage and then became steady, while the resistivity of CFRC containing nano carbon black had a sharp decrease at the dosage of 0.6%. With the increase of compression load, the coefficient of resistivity variation of CFRC containing nano carbon black and steel slag powder changed little. The coefficient of resistivity variation increased with the increase of steel slag powder in the dry environment, and CFRC had preferable pressure sensitivity when the mass fractions of carbon fiber and carbon nanofiber were 0.4% and 0.6%, respectively. Besides, in the humid environment, the coefficient of resistivity variation decreased with the increase of steel slag powder, and the diphasic electric conduction concrete containing 0.4% carbon fibers and 20% steel slag powder had the best pressure sensitivity under the damp environment. Moreover, in the dry environment, CFRC containing nano and micro conductive materials presented better temperature sensitivity in the heating stage than in the cooling stage no matter carbon nanofiber, nano carbon black or steel slag powder was used, especially for the CFRC containing steel slag powder.


Sign in / Sign up

Export Citation Format

Share Document