The effect of textured surface on graphene wettability and droplet evaporation

Author(s):  
S. Y. Misyura ◽  
V. A. Andryushchenko ◽  
V. S. Morozov ◽  
D. V. Smovzh
Author(s):  
Ksenia A. BATISHCHEVA ◽  
Yuliya N. Vympina ◽  
Evgeniya G. ORLOVA

Establishing the characteristics of the self-assembly of micron and sub-micron particles when colloidal solution droplets evaporate from solid surfaces is an urgent problem. This is explained by the possibility of using these structures obtained by droplet technologies to create and optimize the production of direct and indirect liquid cooling devices, electronic and sensor working boards, current-conducting coatings, optical crystals, and chemo sensors. The method used in this study for processing of metals and alloys by laser radiation is prospective for controlling the processes at the liquid/gas/solid interface. This article aims to analyze the effect of laser processing of the widely used in the industry aluminum-magnesium alloy on the formation of a layer of particles during the droplet evaporation of colloidal solutions. The samples’ surfaces were processed by two methods: polished by tumbling and nanosecond laser pulses. The geometric parameters of the droplets of colloidal solutions evaporating from the samples’ surfaces were determined by the shadow method. To process the obtained shadow images, the Young — Laplace method was used. Using a scanning electron microscope, the authors have received the images of the particles’ layers formed due to the droplet evaporation of colloidal solutions. The experimental studies reveal the effect of texture formed on aluminum-magnesium alloy sample on the morphology of the layer of polystyrene nanoparticles during the droplet evaporation of colloidal solutions. Due to the self-assembly of particles, solid ring-like sediments are formed, which are elongated under the action of the capillary force parallel to the motion vector of the laser beam (when creating the texture). When the solvent evaporated from the solution droplet on the textured surface, in addition to the rings, a homogeneous layer of polystyrene particles was formed. This refers to the droplet evaporation of the solution. The results show that with an increase in the concentration of particles in the solution, the sizes of radial cracks on the rings formed due to particle deposition increase. There were no cracks on the rings at a relatively low volume concentration of particles.


2018 ◽  
Author(s):  
A. Alperen Gunay ◽  
Marisa Gnadt ◽  
Soumyadip Sett ◽  
Junho Oh ◽  
Nenad Miljkovic

1973 ◽  
Vol 1 (4) ◽  
pp. 354-362 ◽  
Author(s):  
F. R. Martin ◽  
P. H. Biddison

Abstract Treads made with emulsion styrene-butadiene copolymer (SBR), solution SBR, polybutadiene (BR), and a 60/40 emulsion SBR/BR mixture were built as four-way tread sections on G78-15 belted bias tires, which were driven over both concrete and gravel-textured highways and on a small, circular, concrete test track. The tires were front mounted. When driven on concrete highway, all except the BR tread had either crumbled- or liquid-appearing surfaces, thought to have been formed by mechanical degradation or fatigue. When cornered on concrete, these materials formed small cylindrical particles or rolls. The BR tread had a smooth, granular-textured surface when driven on concrete highway and a ridge or sawtooth abrasion pattern when cornered on concrete. All the materials appeared rough and torn when run on gravel-textured highway. The differences in wear surface formed on BR tread and the other three are thought to be due primarily to the relatively high resilience of BR.


Author(s):  
Abgail Paula Pinheiro ◽  
João Marcelo Vedovoto

Author(s):  
KSENIA A. Batishcheva ◽  
ATLANT E. Nurpeiis

With an increase in the productivity of power equipment and the miniaturization of its components, the use of traditional thermal management systems becomes insufficient. There is a need to develop drip heat removal systems, based on phase transition effects. Cooling with small volumes of liquids is a promising technology for microfluidic devices or evaporation chambers, which are self-regulating systems isolated from the external environment. However, the heat removal during evaporation of droplets into a limited volume is a difficult task due to the temperature difference in the cooling device and the concentration of water vapor that is unsteady in time depending on the mass of the evaporated liquid. This paper presents the results of an experimental study of the distilled water microdrops’ (5-25 μl) evaporation on an aluminum alloy AMg6 with the temperatures of 298-353 K in an isolated chamber (70 × 70 × 30 mm3) in the presence of heat supply to its lower part. Based on the analysis of shadow images, the changes in the geometric dimensions of evaporating drops were established. They included the increase in the contact diameter, engagement of the contact line due to nano roughening and chemical composition inhomogeneous on the surface (90-95% of the total evaporation time) of the alloy and a decrease in the contact diameter. The surface temperature and droplet volume did not affect the sequence of changes in the geometric dimensions of the droplets. It was found that the droplet volume has a significant effect on the evaporation time at relatively low substrate temperatures. The results of the analysis of droplet evaporation rates and hygrometer readings have shown that reservoirs with salt solutions can be used in isolated chambers to control the concentration of water vapor. The water droplets evaporation time was determined. The analysis of the time dependences of the evaporation rate has revealed that upon the evaporation of droplets in an isolated chamber under the conditions of the present experiment, the air was not saturated with water vapor. The latter did not affect the evaporation rate.


Author(s):  
Haonan Li ◽  
Rong Chen ◽  
Xun Zhu ◽  
Qiang Liao ◽  
Dingding Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document