Enhanced luminescent intensity of Sr2SiO4:Tb3+ phosphors by charge compensation (Li+) addition

2016 ◽  
Vol 27 (9) ◽  
pp. 9448-9453 ◽  
Author(s):  
Xiaojuan Yang ◽  
Bing Zhang ◽  
Tian Xu ◽  
Lixi Wang ◽  
Jialin Shen ◽  
...  
2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


2019 ◽  
Vol 104 (12) ◽  
pp. 1800-1805
Author(s):  
George M. Amulele ◽  
Anthony W. Lanati ◽  
Simon M. Clark

Abstract Starting with the same sample, the electrical conductivities of quartz and coesite have been measured at pressures of 1, 6, and 8.7 GPa, respectively, over a temperature range of 373–1273 K in a multi-anvil high-pressure system. Results indicate that the electrical conductivity in quartz increases with pressure as well as when the phase change from quartz to coesite occurs, while the activation enthalpy decreases with increasing pressure. Activation enthalpies of 0.89, 0.56, and 0.46 eV, were determined at 1, 6, and 8.7 GPa, respectively, giving an activation volume of –0.052 ± 0.006 cm3/mol. FTIR and composition analysis indicate that the electrical conductivities in silica polymorphs is controlled by substitution of silicon by aluminum with hydrogen charge compensation. Comparing with electrical conductivity measurements in stishovite, reported by Yoshino et al. (2014), our results fall within the aluminum and water content extremes measured in stishovite at 12 GPa. The resulting electrical conductivity model is mapped over the magnetotelluric profile obtained through the tectonically stable Northern Australian Craton. Given their relative abundances, these results imply potentially high electrical conductivities in the crust and mantle from contributions of silica polymorphs. The main results of this paper are as follows:The electrical conductivity of silica polymorphs is determined by impedance spectroscopy up to 8.7 GPa.The activation enthalpy decreases with increasing pressure indicating a negative activation volume across the silica polymorphs.The electrical conductivity results are consistent with measurements observed in stishovite at 12 GPa.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


1993 ◽  
Vol 346 (1-3) ◽  
pp. 104-109 ◽  
Author(s):  
A. P. Pijpers ◽  
K. Berresheim ◽  
M. Wilmers
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document