Synthesis, characterization and photocatalytic activity of the lanthanum barium copper oxide nanoparticles in presence of stearic acid as solvent and stabilizer agent

2016 ◽  
Vol 28 (3) ◽  
pp. 2747-2753 ◽  
Author(s):  
Salah Khanahmadzadeh ◽  
Nakisa Paknahad ◽  
Farinaz Azizi
Science ◽  
1987 ◽  
Vol 235 (4788) ◽  
pp. 567-569 ◽  
Author(s):  
C. W. CHU ◽  
P. H. HOR ◽  
R. L. MENG ◽  
L. GAO ◽  
Z. J. HUANG

Author(s):  
Pavani Peddi ◽  
Prasada Rao PTSRK ◽  
Nannapaneni Usha Rani ◽  
S. Lakshmi Tulasi

Abstract Background The aim of this work was to synthesize copper oxide nanoparticles (CuO NPs) utilizing heartwood aqueous extract of Suaeda maritima (L.) Dumort. The synthesis of CuO NPs using green methodology with small size and high stability paved the way to protect the environment by not involving toxic chemicals and environment-friendly methodology for pharmacological and photocatalytic applications. The aqueous areal parts extract of S. maritima (L.) Dumort was used for synthesis, characterization of CuO NPs was studied, and further its antioxidant, antibacterial, and photocatalytic activity for the removal of methylene blue was studied. Results The synthesized CuO NPs shows characteristic UV-visible absorption maximum at 282 nm. The FT-IR spectra shows peak at 3640 cm−1 attributed to hydrogen bonded O-H group of poly phenols, alcohols, and N-H of amide. Strong peak at 1122 cm−1 corresponds to C-OH stretch in phenols and alcohols. Peaks at 1467 cm−1 and 1585 cm−1 corresponds to C=C in aromatic compounds. Strong peak at 1749 cm−1 represents the C=O in aldehydes or in keto compounds. Several strong bonds identified in the range of 1088 to 1225 cm−1 representing C-O-C stretch vibrations. The synthesized particles were circular in shape with rough surface morphology and dispersed as clusters with size of 37 nm with metallic content of 73.8%. The synthesized CuO NPs were proved as potent antibacterial and antioxidant activities. The photocatalytic for the removal of methylene blue in aqueous solution was studied and results proved that the CuO NPs were effectively remove the dye up to 86.91% within less time of 75 min. Hence, the CuO NPs synthesized are high efficiency with less particle size and can be used as antioxidant, antibacterial agent, and also applicable for the removal of hazardous methylene blue dye from effluents and can contribute indirectly to clean up the environment. Conclusions The investigation reports the eco-friendly, cost-effective method for synthesizing copper oxide nanoparticles from S. maritima extract with biomedical applications.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Sign in / Sign up

Export Citation Format

Share Document