Microstructure and performance evolution of SnPbSb solder joint under γ-ray irradiation and thermal cycling

2019 ◽  
Vol 30 (5) ◽  
pp. 4990-4999 ◽  
Author(s):  
Jianhao Wang ◽  
Songbai Xue ◽  
Zhaoping Lv ◽  
Li Wen ◽  
Siyi Liu
2021 ◽  
Vol 161 ◽  
pp. 106521
Author(s):  
Hui Guo ◽  
Zirong Zhou ◽  
Meng Gu ◽  
Anfeng Yu ◽  
Xiaodong Ling ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 733
Author(s):  
Lu Liu ◽  
Songbai Xue ◽  
Ruiyang Ni ◽  
Peng Zhang ◽  
Jie Wu

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 °C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from −40 °C to 125 °C for 1000 cycles were investigated. Compared to the Sn–Bi solder joint, the TSEP Sn–Bi solder joints had increased reliability. The microstructure observation shows that the epoxy resin curing process did not affect the transformation of the microstructure. The shear force of the TSEP Sn–Bi solder joints after 1000 cycles of thermal cycling test was 1.23–1.35 times higher than the Sn–Bi solder joint and after 1000 h of temperature and humidity tests was 1.14–1.27 times higher than the Sn–Bi solder joint. The fracture analysis indicated that the cured cover layer could still have a mechanical reinforcement to the TSEP Sn–Bi solder joints after these reliability tests.


2009 ◽  
Vol 49 (9-11) ◽  
pp. 1267-1272 ◽  
Author(s):  
M. Berthou ◽  
P. Retailleau ◽  
H. Frémont ◽  
A. Guédon-Gracia ◽  
C. Jéphos-Davennel

2021 ◽  
Vol 825 ◽  
pp. 141918
Author(s):  
Ziwei Zhang ◽  
Siqi Zhao ◽  
Yongqi Lv ◽  
Hongbo Zhang ◽  
Zhenwei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document