Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer

2010 ◽  
Vol 21 (9) ◽  
pp. 2691-2699 ◽  
Author(s):  
Naveen K. Thakral ◽  
Alok R. Ray ◽  
Dipak K. Majumdar
Nanoscale ◽  
2022 ◽  
Author(s):  
Aviral Kumar ◽  
Amarnath Singam ◽  
Guruprasadh Swaminathan ◽  
Naresh Killi ◽  
Naveen Kumar Tangudu ◽  
...  

This novel combination of curcumin (CU)–chitosan (CS) nanocomposites conjugated to Ephb4 shRNA encapsulated with Eudragit S-100 (ES) has been developed to combat breast and colorectal cancers murine models.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saikat Pande ◽  
Janu Vashi ◽  
Ajay Solanki

Background: Flurbiprofen (FLBP) is used in the treatment of ulcerative colitis and has a short biological half-life. Frequent intake of FLBP may lead to some serious gastric complications, which makes FLBP an ideal candidate for sustained release preparation to the Ileo-colonic region of the gastrointestinal tract (GIT). Objective: The objective of this study was to investigate the potential of Eudragit coated chitosan microspheres in delivering Flurbiprofen in a sustained manner to the Ileo-colonic region of the GIT for treatment of ulcerative colitis. Methods: In the present study, mucoadhesive chitosan microspheres were prepared using the emulsion solvent evaporation method by varying different process parameters. Optimized chitosan microspheres were coated with Eudragit L-100 and Eudragit S-100. A 32 full factorial design was applied for optimization. The effect of independent variables (Eudragit L-100 to Eudragit S-100 ratio and stirring speed) on the dependent variable, i.e., percentage cumulative drug release (%CDR) at 3 h and 24 h was evaluated. The optimized batch was evaluated by FT-IR, DSC study, XRD study, and SEM analysis. Results: Discrete spherical shape chitosan microspheres with entrapment efficiency of up to 95.4% were obtained and selected for coating. Chitosan microspheres coated successfully with different ratios of Eudragit L-100 to Eudragit S-100. The release profile of the optimized batch match with the desired release profile. FLBP was found to be stable and molecularly dispersed in the polymer matrix. Conclusion: Taken together, it can be concluded that prepared microspheres may be considered suitable for delivering FLBP to the Ileo-colonic region of the GIT in the treatment of ulcerative colitis.


2012 ◽  
Vol 62 (4) ◽  
pp. 529-545 ◽  
Author(s):  
Anuj Chawla ◽  
Pooja Sharma ◽  
Pravin Pawar

The aim of the study was to prepare site specific drug delivery of naproxen sodium using sodium alginate and Eudragit S-100 as a mucoadhesive and pH-sensitive polymer, respectively. Core microspheres of alginate were prepared by a modified emulsification method followed by cross-linking with CaCl2, which was further coated with the pH dependent polymer Eudragit S-100 (2.5 or 5 %) to prevent drug release in the upper gastrointestinal environment. Microspheres were characterized by FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and evaluated by scanning electron microscopy, particle size analysis, drug loading efficiency, in vitro mucoadhesive time study and in vitro drug release study in different simulated gastric fluids. Stability studies of the optimized formulation were carried out for 6 months. SEM images revealed that the surface morphology was rough and smooth for core and coated microspheres, respectively. Core microspheres showed better mucoadhesion compared to coated microspheres when applied to the mucosal surface of freshly excised goat colon. The optimized batch of core microspheres and coated microspheres exhibited 98.42 ± 0.96 and 95.58 ± 0.74 % drug release, respectively. Drug release from all sodium alginate microsphere formulations followed Higuchi kinetics. Moreover, drug release from Eudragit S-100 coated microspheres followed the Korsmeyer-Peppas equation with a Fickian kinetics mechanism. Stability study suggested that the degradation rate constant of microspheres was minimal, indicating 2 years shelf life of the formulation.


2005 ◽  
Vol 40 (8) ◽  
pp. 2707-2714 ◽  
Author(s):  
Zhilu Ai ◽  
Zhengqiang Jiang ◽  
Lite Li ◽  
Wei Deng ◽  
Isao Kusakabe ◽  
...  

Author(s):  
S. Sivaprasad ◽  
V. Alagarsamy ◽  
M. Prathibha Bharathi ◽  
P.V. Murali Krishna ◽  
K. Sandeeep Kanna

The main objective of the present study was to design a controlled release dosage form for an oral anti diabetic drug i.e. repaglinide employing polymers like eudragit s- 100. One of the other objective of this present study was to increase the biological half-life the drug by formulating into microspheres. The microspheres of repaglinide were prepared by solvent evaporation method by using eudragit s-100 and ethyl cellulose as polymers with different concentrations. Formulations (F1-F10) were prepared and evaluated for various micrometric properties and it was observed that though all the formulations were exhibited good flow properties, The F5 formulation exhibits higher in- vitro buoyancy time and entrapment efficiency which is considered for in- vitro and mucoadhesive studies. The FTIR results reveal that there was no interaction between the drug and the excipients. The in- vitro release profiles of F1-F5 indicated that all formulations showed controlled release over an extended period, with acceptable release kinetics. Among the all formulations F5 were considered as a promising candidate for sustain release of repaglinide.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Pooja Sharma ◽  
Anuj Chawla ◽  
Pravin Pawar

The aim of present investigation deals with the development of time-dependent and pH sensitive press-coated tablets for colon specific drug delivery of naproxen. The core tablets were prepared by wet granulation method then press coated with hydroxypropyl cellulose (HPC) or Eudragit RSPO : RLPO mixture and further coated with Eudragit S-100 by dip immerse method. Thein vitrodrug release study was conducted in different dissolution media such as pH 1.2, 6.8, and 7.4 with or without rat caecal content to simulate GIT conditions. Surface morphology and cross-sectional view of the tablets were visualized by scanning electron microscopy (SEM). All prepared batches were in compliance with the pharmacopoeial standards. The tablets which are compression coated with HPC followed by Eudragit S-100 coated showed highestin vitrodrug release of 98.10% in presence of rat caecal content. The SEM of tablets suggested that the number of pores got increased in pH 7.4 medium followed by dissolution of coating layer. The tablets coat erosion study suggested that the lag time depends upon the coating concentrations of polymers. A time-dependent hydrophilic polymer and pH sensitive polymer based press-coated tablets of naproxen were promising delivery for colon targeting.


2021 ◽  
Vol 39 (6) ◽  
pp. 408-417
Author(s):  
Chao Teng ◽  
Huihua Tang ◽  
Xiuting Li ◽  
Yunping Zhu ◽  
Guangsen Fan ◽  
...  
Keyword(s):  
S 100 ◽  

INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (10) ◽  
pp. 30-38
Author(s):  
S Vidyadhara ◽  
◽  
R. L. C. Sasidhar ◽  
P Thrilochani ◽  
L. K. Lavanya

The present investigation was focused on the development and evaluation of controlled release pellets of losartan potassium with Eudragit S 100 and hydroxypropyl methyl cellulose phthalate (HPMCP) by employing pan coating technique. Eudragit S 100, a high viscosity grade controlled release polymer, was mainly used as coating agent for regulating the drug release from pellets. HPMCP, an enteric coating polymer was used in the present study to regulate the drug release at varied G.I. pH conditions. The prepared pellets were evaluated for particle size, drug content, friability and for in vitro drug release. The formulations were further characterized to identify any possible interactions by FTIR spectroscopy and differential scanning calorimetry. The surface morphology of the pellets was studied by scanning electron microscopy. From the results it was observed that due to increase in the concentration of Eudragit the drug release was extended up to 12 hours. The increase in the HPMCP polymeric concentration in formulations showed initial delay in drug release.


Sign in / Sign up

Export Citation Format

Share Document