Formulation and Evaluation of Mucoadhesive Floating Microspheres of Repaglinide

Author(s):  
S. Sivaprasad ◽  
V. Alagarsamy ◽  
M. Prathibha Bharathi ◽  
P.V. Murali Krishna ◽  
K. Sandeeep Kanna

The main objective of the present study was to design a controlled release dosage form for an oral anti diabetic drug i.e. repaglinide employing polymers like eudragit s- 100. One of the other objective of this present study was to increase the biological half-life the drug by formulating into microspheres. The microspheres of repaglinide were prepared by solvent evaporation method by using eudragit s-100 and ethyl cellulose as polymers with different concentrations. Formulations (F1-F10) were prepared and evaluated for various micrometric properties and it was observed that though all the formulations were exhibited good flow properties, The F5 formulation exhibits higher in- vitro buoyancy time and entrapment efficiency which is considered for in- vitro and mucoadhesive studies. The FTIR results reveal that there was no interaction between the drug and the excipients. The in- vitro release profiles of F1-F5 indicated that all formulations showed controlled release over an extended period, with acceptable release kinetics. Among the all formulations F5 were considered as a promising candidate for sustain release of repaglinide.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


2016 ◽  
Vol 15 (1) ◽  
pp. 47-55
Author(s):  
Md Ataur Rahman ◽  
Nusrat Ahmed ◽  
Ikramul Hasan ◽  
Md Selim Reza

In the present study naproxen loaded microspheres were prepared by emulsification solvent evaporation method in order to achieve targeted drug delivery. Eudragit L 100 and Eudragit S 100 were used as the rate retardant polymers in the preparations. Thirteen formulations (F1-F13) were prepared using 22 factorial design by changing the concentration of these two polymers. All the formulations were evaluated for product yield, drug content, entrapment efficiency, particle size and drug release profiles. Highest drug content and entrapment efficiency were found to be 30.17% (F4) and 91.86% (F8) respectively. The particle size was found to be 159.26-234.70 ?m for all formulations. In-vitro drug release studies were performed using USP type II (Paddle) apparatus for 8 hrs in pH 7.4 phosphate buffer. The maximum drug release after 8 hrs was found to be 60.19% for batch F4. The release kinetics of all formulations were evaluated by using zero order, first order, Higuchi, Korsmeyer-Peppas, Kopcha and Hixson Crowell model. Almost all formulations fitted best with the Kopcha kinetic model. The SEM study indicated the spherical structure of the microspheres having rough surfaces.Dhaka Univ. J. Pharm. Sci. 15(1): 47-55, 2016 (June)


2015 ◽  
Vol 1123 ◽  
pp. 312-315 ◽  
Author(s):  
Akhtar Jahan Siddiqa ◽  
Koel Chaudhury ◽  
Basudam Adhikari

The present work focuses on the development of biodegradable PLGA nanoparticles (NPs) for controlled release of a breast cancer drug, letrozole. NPs of different drug-polymer ratio formulations (F1, F2, F3, F4) were fabricated using solvent evaporation technique. Physico-chemical characteristics of these NPs were assessed using dynamic light scattering (DLS) spectrophotometer. In-vitro drug release study was carried out over an extended period of 30 days at 37 °C in simulated physiological fluid. To evaluate the release kinetics, data was fitted to different models. NPs with various sizes and size distributions were obtained by altering the drug-polymer ratio. Zeta potential of PLGA and drug loaded NPs were found to be-29.4± 1.3 mV and-21.0±0.6 mV, respectively. The release kinetics of the drug from NPs was in good agreement with Korsmeyer-Peppas model, ensuring controlled release of the drug from the NPs. In-vitro release studies showed high correlation coefficient (R2 = 0.90) for formulation F2 and F3 up to 30 days. It is concluded that NPs with F2 and F3 formulations provide a controlled release of the incorporated drug and, therefore, hold promise to be investigated further in detail.


Author(s):  
S. PATHAK ◽  
S. P. VYAS ◽  
A. PANDEY

Objective: The objective of the present study was to develop, optimize, and evaluate Ibandronate-sodium loaded chitosan nanoparticles (Ib-CS NPs) to treat osteoporosis. Methods: NPs were prepared by the Ionic gelation method and optimized for various parameters such as the effect of concentration of chitosan, sodium tripolyphosphate (TPP), and pH effect on particle size polydispersity index (PDI), zeta potential, and entrapment efficiency. The prepared nanoparticles were characterized using particle size analyzer (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-Transform Infrared spectroscopy (FTIR).  Results: Formulated NPs were obtained in the average nano size in the range below 200 nm in TEM, SEM, and DLS studies. The particle size and encapsulation efficiency of the optimized formulation were 176.1 nm and 63.28%, respectively. The release profile of NPs was depended on the dissolution medium and followed the First-order release kinetics. Conclusion: Bisphosphonates are the most commonly prescribed drugs for treating osteoporosis in the US and many other countries, including India. Ibandronate is a widely used anti-osteoporosis drug, exhibits a strong inhibitory effect on bone resorption performed by osteoclast cells. Our results indicated that Ibandronate sodium-loaded chitosan nanoparticles provide an effective medication for the treatment of osteoporosis.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (10) ◽  
pp. 30-38
Author(s):  
S Vidyadhara ◽  
◽  
R. L. C. Sasidhar ◽  
P Thrilochani ◽  
L. K. Lavanya

The present investigation was focused on the development and evaluation of controlled release pellets of losartan potassium with Eudragit S 100 and hydroxypropyl methyl cellulose phthalate (HPMCP) by employing pan coating technique. Eudragit S 100, a high viscosity grade controlled release polymer, was mainly used as coating agent for regulating the drug release from pellets. HPMCP, an enteric coating polymer was used in the present study to regulate the drug release at varied G.I. pH conditions. The prepared pellets were evaluated for particle size, drug content, friability and for in vitro drug release. The formulations were further characterized to identify any possible interactions by FTIR spectroscopy and differential scanning calorimetry. The surface morphology of the pellets was studied by scanning electron microscopy. From the results it was observed that due to increase in the concentration of Eudragit the drug release was extended up to 12 hours. The increase in the HPMCP polymeric concentration in formulations showed initial delay in drug release.


2013 ◽  
Vol 63 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Hemanta Kumar Sharma ◽  
Sunita Lahkar ◽  
Lila Kanta Nath

The present work envisages utilisation of biodegradable and biocompatible material from natural sources for the development of controlled release microspheres of metformin hydrochloride (MetH). Natural polysaccharides extracted from Dillenia indica L. (DI), Abelmoschus esculentus L. (AE) and Bora rice flour were used in fabricating controlled release microspheres. The microspheres were prepared by the emulsion solvent diffusion technique with different proportions of natural materials and were studied for entrapment efficiency, particle size, particle shape, surface morphology, drug excipient compatibility, mucoadhesivity and in vitro release properties. The prepared microspheres showed mucoadhesive properties and controlled release of metformin hydrochloride. The study has revealed that natural materials can be used for formulation of controlled release microspheres and will provide ample opportunities for further study


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


2020 ◽  
Vol 10 (5) ◽  
pp. 182-187
Author(s):  
Manoj R. Chincholikar ◽  
Jagdish Rathi

The  present  work  is  aimed  to  formulate  Cefdinir  floating  tablets  using different  hydrophilic  and  hydrophobic  polymers  like  HPMC,  Ethyl  cellulose, Xanthum gum, guar gum and gas generating agent Sodium bicarbonate. The develop gastro retentive dosage form thatcould  retain  the  agent  namely  Cefdinir  in  the  stomach  for  longer periods of time delivering the drug to the site of action, i.e., stomach. HPMC  is  used  as  a  swelling  agent,  Guar  gum  and  Xanthum  gum  is used as binding agent. Ethyl cellulose is used as matrix form agent.  PVP is used as a suspending agent. Sodium bicarbonate is used as a gas forming agent. MCC is used as a disintergrant and diluent. Magnesium stearate is used as a lubricant. The  prepared  Cefdinir  tablets  will  be  evaluated  for  drug  content,  entrapment efficiency, post compression studies, In-vitro buoyancy studies, swelling index studies, in-vitro dissolution studies, release kinetics, stability studies.All these parameters were found to be within the pharmacopoeial limits. Formulation F5 was selected for drug release and stability study on the basis of appropriate results of post compression study.In vitro dissolution study was carried out and showed controlled release pattern. Keywords: Gas Powered Systems, Cefdinir, Controlled release, Floating drug delivery.


Author(s):  
Taraka Sunil Kumar K ◽  
M. Mohan Varma ◽  
Ravi Prakash P

Solid-lipid nanoparticles (SLNs) are an alternative carrier system used for loading the drug for targeting, improving the bioavailability by increasing its solubility, and protecting the drug from presystemic metabolism. The avoidance of presystemic metabolism is due to the nanometric size range so that the liver cannot uptake the drug from the delivery system and is not metabolized by the liver. Bortezomib is an anti-cancer drug. Due to its poor oral bioavailability, presystemic metabolism and decreased half-life, it was chosen to formulate as the SLN system with the use of a 3-factor, 3-level Box–Behnken design, by hot homogenization followed by an ultrasonication method. Trimyristin (Dynasan-114), tripalmitin (Dynasan 116) and tristearin (Dynasan-118) were used as lipids and based on the results from the initial studies tripalmitin (Dynasan116) was selected as the lipid for the further studies along with phosphatidylcholine as surfactant and Poloxamer 188 as stabilizer. The optimized formulation (F1) was obtained with minimum particle size (204 nm), maximum entrapment efficiency (70.24) and drug loading (21.24). The optimised batches were further investigated by FTIR, DSC, XRD, SEM and stability. In vitro release studies showed that maximum cumulative drug release was obtained for F1 (99.74%). The optimized formulation Bortezomib followed zero-order release kinetics with a strong correlation coefficient (R2= 0.9994). The nanoformulation prepared under optimized conditions is in concurrence with the expected results. It is concluded that the SLN formulation can be used as a potential carrier for the effective delivery of Bortezomib.


2016 ◽  
Vol 1 (3) ◽  
pp. 396-405
Author(s):  
Johura Ansary ◽  
Amit Kumar Chaurasiya ◽  
KM Bashirul Huq

The purpose of the present investigation was the preparation and evaluation of gastro-retentive floating drug delivery system for anti-diabetic drug metformin hydrochloride that would retain the drug in stomach and continuously release the drug in controlled manner up to a predetermined time leading to improve bioavailability. The microspheres were prepared by oil-in-oil emulsion solvent evaporation technique using ethyl cellulose, methacrylic acid copolymer (Eudragit RS100, Eudragit RSPO and Eudragit RLPO). The dried floating microspheres were evaluated for percentage yield (%), actul drug content (%), drug entrapment efficiency, floating behavior, scanning electron microscopy and in vitro drug release studies. The microspheres were found spherical, porous and free flowing with a size range. Compatibility studies were performed by fourier transform infra-redand (FTIR) and differential thermal analysis (DTA) techniques. The DTA and FTIR data stated that drug and excipient were compatible. In-vitro release kinetics were studied in different mathematical release models following the zero order, Higuchi and Korsemeyer to find out the linear relationship and release rate of drug. The drug might be released by both diffusion and erosion as the correlation coefficient (R2) best fitted with Korsemeyer model and release exponent (n) was 0.45-0.89. In most cases good in vitro floating behavior was observed and a broad variety of drug release pattern was achieved by variation of the polymer which optimized to match target release profile. The developed floating microspheres of metformin hydrochloride may be used in clinic for prolonged drug release in stomach for at least 8 hrs, thereby improving the bioavailability and patient compliance.Asian J. Med. Biol. Res. December 2015, 1(3): 396-405


Sign in / Sign up

Export Citation Format

Share Document